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Abstract—In this paper, we propose a novel deep architecture
with multiple classifiers for continuous sign language recog-
nition. Representing the sign video with a 3D convolutional
residual network and a bidirectional LSTM, we formulate
continuous sign language recognition as a grammatical-rule-
based classification problem. We first split a text sentence of
sign language into isolated words and n-grams, where an n-
gram is a sequence of consecutive n words in a sentence.
Then, we propose a word-independent classifiers (WIC) module
and an n-gram classifier (NGC) module to identify the words
and n-grams in a sentence, respectively. A greedy decoding
algorithm is employed to integrate words and n-grams into
the sentence based on the confidence scores provided by both
modules. Our method is evaluated on a Chinese continuous
sign language recognition benchmark, and the experimental
results demonstrate its effectiveness and superiority.

Keywords-N-gram; Continuous Sign Language Recognition;
Multi-classifier

I. INTRODUCTION

Sign language is a non-trivial communication way in the
deaf community. However, due to the lack of knowledge
about sign language for most hearing people, there is a
communication gap between the deaf people and hearing
people, which leads to the potential loss of opportunities in
education and employment for deaf people. Sign language
recognition (SLR) aims to translate sign videos into ordered
sign glosses, which helps hearing people understand the
content of sign videos. Generally, SLR methods are divided
into two categories, i.e., isolated sign language recognition
and continuous sign language recognition. Isolated SLR [1],
[2], [3] is a kind of fine-grained action recognition task,
where each sign video describes a single sign word. In
contrast, continuous SLR [4] tackles sign videos describing
sign sentences, which is more challenging and practical.
To be specific, the accurate semantic boundaries in a sign
video are unknown, which makes it difficult to align frames
with glosses. Under this background, continuous SLR is
essentially a kind of weakly supervised learning task.

To address continuous SLR and its related tasks, several
recent works [5], [6], [7], [8] have developed their methods
following an encoder-decoder framework [9] with impres-
sive performance. Generally, these methods select decoders
based on classical recurrent neural networks (RNN) to
generate sign sentences. However, as discussed in [10], [11],
there is a problem of error accumulation in these sentence

generating models. In the training stage, the decoders are
typically fed with the ground truth sentence. While in the
testing stage, the generation of the next word is dependent
on the generated distribution of the previous word. Such
kind of dependency leads to severe errors in the generation
process.

Our method is free of such error accumulation. Instead
of using a classical RNN as the decoder, we design a novel
decoding module consisting of multiple grammatical-rule-
based classifiers, inspired by [12] and [13] tackling street
number recognition and text recognition, respectively. After
encoding the original sign video into a feature vector, we
propose the word-independent classifiers (WIC) module,
which contains a series of classifiers and each recognizes
a word from the feature vector. The word classifiers are
independent, which gets rid of error accumulation in the
testing stage. Besides, there are amounts of common phrases
and expressions in sign language, which are expressed in
more than one word. They can be utilized as additional
supervision and contribute to sentence recognition. To this
end, we propose the n-gram classifier (NGC) module, which
acts as a grammar-based multi-label classifier to identify the
n-grams (i.e., sign phrases) in the sentence. Note that in
the n-gram model, unigram, bigram, and trigram represent
one word, two adjacent words, and three consecutive words,
respectively. In the training stage, we split a sentence into
isolated words and n-grams for multiple classification tasks.
While in the testing stage, a greedy decoding algorithm
is proposed for sentence inference, which integrates words
and n-grams into the sentence based on confidence scores
provided by the WIC as well as NGC module.

Our main contributions are summarized as follows:

• We propose a novel deep architecture consisting of mul-
tiple grammatical-rule-based classifiers for continuous
SLR, and we formulate the sentence recognition task
as a classification problem of sign words and n-grams
by introducing the WIC and NGC modules, providing
a new viewpoint to address continuous SLR.

• The proposed WIC module aims to recognize sign
words without dependence on the recognition of pre-
vious words, which gets rid of error accumulation
compared to classical RNN-based sentence generators.
In order to make full use of contextual information, we
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Figure 1. Overview of our proposed architecture. For a sign video, the 3D residual network (3D-ResNet) and bidirectional long short-term memory
(Bi-LSTM) are employed for feature representation and contextual learning, respectively. The following global temporal layer summarizes the video into a
fixed-length vector. The proposed word-independent classifiers (WIC) module, which consists of a series of word classifiers, recognizes sign words in order.
While the n-gram classifier (NGC) module containing only a multi-label classifier identifies sign phrases to help the recognition. We train the network by
joint cross-entropy loss, with the coefficient λ balancing two kinds of losses from WIC and NGC module.

represent phrases as n-grams and introduce the NGC
module to disentangle the multi-label classification
task, which is the first attempt in continuous SLR to
the best of our knowledge.

• We evaluate our method on a large-scale continuous
SLR dataset with extensive experiments, and the results
demonstrate the effectiveness and superiority of our
proposed approach.

The rest of this paper is organized as follows: after
introducing the related works in Section II, we elaborate our
method in Section III. In Section IV we conduct extensive
experiments and give an analysis of the results. At last, we
summarize this paper in Section V.

II. RELATED WORK

In this section, we first introduce feature extraction and
sequence learning, which are two subtasks for video-based
continuous SLR. Then two most common categories of
continuous SLR approaches are discussed, i.e., methods
based on the encoder-decoder framework and connectionist
temporal classification (CTC) [14].

Generally, continuous SLR is a cross-modal task, involv-
ing vision and language. Early related works [15], [16] typi-
cally feed hand-crafted features to statistical sequence mod-
els such as hidden Markov models (HMM) and conditional
random fields (CRF). In recent years, convolutional neural
networks (CNN) and recurrent neural networks (RNN) have
achieved impressive success in the fields of computer vision
and natural language processing, respectively. More and
more SLR approaches employ CNNs for visual feature
extraction [17], [18], [19] and RNNs for temporal sequence
modelling [20], [21], [22], which improve the performance

significantly. Compared to 2D CNNs, 3D CNNs are spe-
cially designed for video feature extraction [23] and soon
widely used in action recognition [24], [25]. Inspired by
this, several works [6], [26], [27] employ 3D CNNs as
spatio-temporal feature extractors for continuous SLR. In
addition, some other works [28], [29], [30] use 2D CNNs
as well as temporal convolutions for spatial and temporal
feature extraction. RNNs have a great capacity for sequence
processing tasks, such as speech recognition [31], neural
machine translation [32], [33] and continuous SLR, thanks to
its recurrent topology. The long short-term memory (LSTM)
[34] and gated recurrent unit (GRU) [9] are both commonly
used RNN cells in continuous SLR.

The encoder-decoder framework is originally proposed
for neural machine translation [9], [35]. Later on, this kind
of architecture is successfully introduced into continuous
SLR. Huang et al. [5] propose a hierarchical network
with the attention mechanism [32], based on the encoder-
decoder framework. It encodes videos hierarchically and
decodes the latent vectors to sign sentences. On the other
hand, CTC is first designed for speech recognition [14]
as a sequence alignment model. Afterwards, it is used in
handwriting recognition [36], [37], lip reading [38], [39],
and sign language recognition [18], [21], [27], achieving
impressive performance. Current state-of-the-art continuous
SLR approaches are mainly developed based on the encoder-
decoder framework as well as the CTC model. Different
from existing approaches, our method with the WIC and
NGC module formulates continuous SLR as a grammatical-
rule-based classification problem and provides a new alter-
native network to the classic CTC or encoder-decoder based
networks.



III. OUR METHOD

Fig. 1 shows the architecture of our proposed method.
First, we split a sign video into a sequence of video
clips and use the 3D residual network (3D-ResNet) for
spatio-temporal video clip representation. Like most of the
sequence learning approaches, the bidirectional long short-
term memory (Bi-LSTM) is adopted to model the temporal
dependency between the clips. A global temporal pooling
layer summarizes the video representation into a fixed-length
feature vector, which is fed into a set of classifiers in the
WIC module and NGC module simultaneously. In the WIC
module, there are a series of classifiers and each performs
a word classification task. While in the NGC module, the
n-gram classifier conducts a multi-label classification task,
where all unigrams, bigrams, and trigrams in the ground
truth sentence are the labels. We use the summation of
weighted cross-entropy losses to train the architecture, and
propose a greedy decoding algorithm to generate a sentence
in the testing stage.

A. Video Representation Learning

In this section, we discuss and formulate the video rep-
resentation with the 3D-ResNet and Bi-LSTM followed by
global temporal pooling in detail.

3D-ResNet. Let X = {xt}Tt=1 be the given sign video
with T frames. First we split the video uniformly into N
clips in a sliding-window way with an overlap. Then the
video is denoted as V = {vi}Ni=1, where vi is the i-th clip
of the video. To better extract the spatio-temporal feature
representation for the clips, we extend the 3D CNN with
residual connections [40], which is denoted as C. The feature
extraction can be represented as follows,

F = {fi}Ni=1 = C
(
{vi}Ni=1

)
, (1)

where F = {fi}Ni=1 denotes the representations for the clips
extracted by the 3D-ResNet, and fi ∈ Rd is the spatio-
temporal feature vector of the video clip vi.

Bi-LSTM. 3D-ResNet learns spatio-temporal representa-
tion within a video clip, while Bi-LSTM models contextual
relationship across video clips. The Bi-LSTM is stacked by
two opposite-directional LSTMs [34], where one for forward
information transfer and the other for backward. Taking both
previous and future video clips into account facilitates a
better understanding of the sign video clip. Let R denotes
the Bi-LSTM. The learning process can be described as
follows,

H = {hi}Ni=1 = R
(
{fi}Ni=1

)
, (2)

where hi ∈ RD is the result of sequence learning, corre-
sponding to video clip vi.

Global temporal pooling. To summarize the content
of the sign video, we conduct a global temporal pooling
operation on the video representation matrix HN×D. This

operation squeezes the temporal dimension and outputs a
feature vector hp ∈ RD. Let P be the global temporal
pooling operation, the pooling process can be represented
as:

hp = P (H) . (3)

There are several alternative pooling strategies: mean pool-
ing, max pooling , first-time pooling and last-time pooling,
where hp = h1 for first-time pooling, and hp = hN for
last-time pooling. We will evaluate these strategies in the
following experimental part.

B. Word-independent Classifiers (WIC) Module

Given a sign video X, our method aims to translate it
into a sentence s = 〈w1, w2, · · · , wn〉, where wi is the i-th
word in the sentence. The length of the sentence is defined as
n = |s|, indicating the number of words in the sentence. Sign
words are from the finite vocabulary V , which is denoted as
wi ∈ V . As the length of a sign sentence is finite, we assume
n 6 L, where L is the largest length of sign sentences.

The key idea of the WIC module is to recognize sign
words in order with a series of word classifiers. More
specifically, the i-th classifier learns to recognize the i-th
word wi. Considering the largest length of sentences is
no more than L, we deploy L ordered classifiers in the
WIC module. However, in most cases, we have n < L,
which means the number of words n and the number of
word classifiers L are not matched. In order to tackle these
cases, we introduce a blank label {‘ ’} to extend the word
vocabulary V , which can be represented as V ′ = V ∪{‘ ’}.
Thus, it is responsible for the i-th classifier to learn not
only whether the i-th word is existent (blank label for non-
existent, non-blank label for existent), but also the category
of this word (if existent). For instance, for a sign video
with the ground truth sentence s = 〈I, have, a, cat〉, the real
length of this sentence is n = 4. The maximum sentence
length L is assumed to be 5, so there are 5 ordered classifiers
in the WIC module. During the training stage, we assign ‘I’,
‘have’, ‘a’, ‘cat’ to the first four classifiers respectively as
the labels. Besides, in order to train the fifth word classifier
with an explicit label, we pad the original sentence s to
s′ = 〈I, have, a, cat, 〉 and assign the blank label ‘ ’ to the
fifth classifier as the reference.

In the WIC module, each classifier with a softmax layer is
constrained by a cross-entropy loss and learns a probability
distribution of the extended vocabulary V ′. The training
objective function in the WIC module can be defined as:

LWIC =

L∑
i=1

L(i), (4)

where L(i) is the cross-entropy loss of the i-th classifier, and
L is the number of classifiers.



C. N-gram Classifier (NGC) Module

In the WIC module, a classifier only focuses on a single
sign word. Actually, in sign language, there are many com-
mon phrases, which are expressed in more than one word.
It is a great help for continuous SLR to regard and utilize
them as additional supervision. To this end, we formulate the
recognition of sign sentence as a multi-label classification
problem, and each label is a sign word or sign phrase. First
of all, according to the definition in the n-gram language
model [41], we represent a single word as a unigram (e.g.,
‘I’), two adjacent words as a bigram (e.g., ‘I, have’), three
consecutive words as a trigram (e.g., ‘I, have, a’). Then we
can use the defined n-grams to express the padded sentence
s′ as an n-gram sentence s′′. For example, the n-gram
sentence s′′ = 〈a, b, c,−, ab, bc, c−, abc, bc−〉 is generated
from the padded sentence s′ = 〈a, b, c,−〉.

Based on the statistics of the training set, we regard all
unigrams, bigrams, and trigrams as independent categories
for the n-gram classifier. All elements in n-gram sentence
s′′ are the labels. As phrases with more than three words
are infrequent, we consider trigram at most, which avoids
sparse labels at the same time. Let LNGC denote the cross-
entropy loss of the n-gram classifier, then the joint training
objective of WIC module and NGC module is defined as:

L = LWIC + λLNGC , (5)

where λ is a tunable coefficient balancing the potential
significance of the two modules.

D. Greedy Decoding for Sentence Generation

We have proposed two models for continuous SLR. One is
the basic model with only the WIC module and trained with
(4), while the other contains both WIC and NGC modules
and is trained according to (5). In this section, we propose
two decoding algorithms to infer a sentence given the test
video for the two models.

First, we elaborate a decoding method for the basic contin-
uous SLR model, i.e., the model without NGC. In the WIC
module, each word classifier predicts the sign word by se-
lecting the category with the largest confidence. Finally, we
obtain a predicted word sequence seq = 〈w1, w2, · · · , wL〉,
where wi is the predicted sign word by the i-th classifier. As
seq may contain the blank labels {‘ ’} that are not in the
original vocabulary V , we delete them from seq and obtain
sentence ŝ, which can be represented as:

ŝ =M (seq) , (6)

where the operation M deletes all blank labels and is a
many-to-one mapping from seq to ŝ.

Next, we propose a greedy decoding algorithm for the
complete continuous SLR model. Generally, the sentence is
inferred word by word according to the confidence scores
in the testing stage. To be specific, for inferring the i-th
word, we consider the word confidence score provided by
the i-th word classifier in the WIC module, and the sum of
n-gram confidence scores provided by the n-gram classifier
in the NGC module. Let Ci

S (w) and Ci
N (w) denote the

confidence functions of the word w provided by the WIC
module and NGC module, respectively, where w ∈ V ′. We
represent the score function of the i-th word w as:

Si (w) = Ci
S (w) + Ci

N (w) , (7)

where Ci
N (w) is the sum of n-gram confidence scores,

i.e., the confidence scores of all the unigram, bigrams,
and trigrams that ends with w. Therefore, Ci

N (w) can be
calculated as (8), where ŵi−2 and ŵi−1 are the generated
sign words in the previous steps before recognizing the i-th
word, and Cuni, Cbi, and Ctri are the n-gram confidence
scores provided by the NGC module. We infer words with
the highest scores one by one, according to Si (w) in (7).
In this greedy way, we obtain a generated sequence with L
words. After conducting the operation defined in (6), we get
the final sentence.

IV. EXPERIMENTS

In this section, we provide the experimental details, then
we evaluate our proposed methods and make the analysis.
Furthermore, we discuss other continuous SLR approaches
and compare them with ours.

A. Dataset and Implementation Details

We evaluate our methods on the CSL dataset [5], a large-
scale video-based Chinese sign language dataset, which
covers 100 sentences and each sentence is performed by
50 signers. The CSL dataset contains 100 × 50 = 5000
video instances in total and the word vocabulary size is
178. All the sentences have an average length of 5, and
the longest sentence contains 7 sign words. Therefore, the
proposed WIC module consists of L = 7 word classifiers.

Following the work [6], we provide two strategies to split
the CSL dataset into the training set and testing set. To be
specific, (a) Split I - signer independent test: this strategy
splits the 50 signers into 40 signers as the training set and 10
signers as the testing set. Both the training and testing sets
contain all the 100 sentences. (b) Split II - unseen sentence

Ci
N (w) =


Cuni (w) , i = 1

Cuni (w) + Cbi (〈ŵi−1, w〉) , i = 2

Cuni (w) + Cbi (〈ŵi−1, w〉) + Ctri (〈ŵi−2, ŵi−1, w〉) , i ≥ 3

, (8)



Table I
EVALUATION OF DIFFERENT POOLING STRATEGIES FOR THE GLOBAL
POOLING LAYER. BETTER PERFORMANCE HAS A HIGHER VALUE FOR

PRECISION, AND A LOWER VALUE FOR WER.

Pooling strategy Precision on Split I WER on Split II
mean pooling 0.929 0.549
max pooling 0.952 0.532

first-time pooling 0.935 0.577
last-time pooling 0.931 0.581

test: this strategy splits the 100 sentences into 94 sentences
as the training set and the remaining sentences as the testing
set. Signers in training and testing sets are the same. What’s
more, the words in the testing set are also contained in
the training set, but the sentences in both sets are different
from each other. We use the same hyper-parameters on both
datasets from different splitting strategies.

To evaluate the performance quantitatively, a series of
performance metrics are introduced. For CSL Split I, the
sentences in test videos are seen in the training stage. So
we use a strict metric called precision, which is essentially
a sentence-level accuracy rate. For CSL Split II, as the
sentences in the testing set are all different from the training
set, generating completely correct sentences is too hard.
Instead of precision, the word error rate (WER) is used as
the evaluation metric. It is a kind of word-level error rate
and has been widely used in continuous SLR [18], [21]. The
definition of WER is as follows,

WER =
#ins + #del + #sub

#reference
, (9)

where #ins, #del and #sub denote the number of insertions,
deletions and substitutions, respectively, to transform the
predicted sentence to the reference sentence. In addition,
we also employ other semantic evaluation metrics from
natural language processing and neural machine translation,
including BLEU, METEOR, ROUGE-L, and CIDEr. Note
that better performance has a lower value for WER and the
higher values for the rest of the metrics.

We use a sliding window with a size of 8 and a stride
of 4 to split sign videos into clips. Therefore, each clip
contains 8 frames and there are 50% overlapped frames
between two adjacent clips. Actually, in the CSL dataset,
consecutive 8 frames can describe a Chinese sign word on
the average. First of all, an 18-layer 3D-ResNet is trained
following the work [27] on an isolated SLR dataset [2]
that covers all words in vocabulary V . We use a SGD
optimizer with a learning rate of 0.001, a momentum of
0.9, and a weight decay of 5 × 10−5. The batch size is 5.
All the following experiments are conducted with the clip
representation extracted by the convergent 3D-ResNet. The
Bi-LSTM module has one layer and both the forward and
backward LSTM have a hidden layer of 512 nodes, i.e.,
D = 512× 2 = 1024. We employ a 50% dropout operation
in the input layer of Bi-LSTM. The proposed deep network
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Figure 2. The sensitivity analysis of parameter λ, which reflects the relative
significance of WIC and NGC, in (5). The experiments are conducted on
CSL Split II dataset.

is trained using a learning rate of 0.00005 with a batch size
of 50.

B. Ablation Study

In this section, we first compare different pooling strate-
gies for the global temporal pooling layer, based on the
basic model without NGC. Then we analyze the sensitivity
of balancing parameter λ in (5) with the complete model.

Table I illustrates the performance on both datasets with
the following pooling strategies: mean pooling, max pooling,
first-time pooling, and last-time pooling, which are defined
in Section III-A. The max-pooling operation has a strong
capacity in selecting the recognizable feature, and it has been
widely used in classification tasks [43], [44]. Compared to
max-pooling, the mean pooling operation takes all temporal
channels into account, which is more like feature fusion.
First-time pooling and last-time pooling have comparable
performance. They all mainly consider unidirectional context
modelling. According to the results, the max pooling strategy
achieves the best performance, with the highest precision of
0.952 on CSL Split I and the lowest WER of 0.532 on CSL
Split II. Hence, all following experiments employ the max
pooling layer as the global temporal pooling module.

In (5), λ adjusts the weight ratio of the loss functions in
WIC and NGC. With the increase of λ, the n-gram constraint
plays a more important role in the training objective. Fig.
2 shows the experimental results on CSL Split II dataset.
λ ranges from 0.2 to 2.0, and we perform an experiment
for every 0.2 increase in λ. Adopting λ = 1.0, our method
achieves the best performance with the lowest WER=0.509,
which demonstrates the equal significance of constraints
from word classifiers and the n-gram classifier. Therefore,
we select λ = 1.0 for the following experiments.

C. Comparison with Other Methods

In this section, we discuss our two methods and other
existing approaches for comparison on both CSL datasets.
Besides, more metrics are adopted for detailed evaluation,
including BLEU, CIDEr, ROUGE-L, and METTOR.



Table II
METHOD COMPARISON ON CSL SPLIT I DATASET FOR SEEN SENTENCE RECOGNITION. FOR ALL THE METRICS IN THIS TABLE, A HIGHER VALUE

INDICATES A BETTER PERFORMANCE.

Method Precision BLEU-1 CIDEr ROUGE-L METEOR
LSTM-CTC [14], [34] 0.858 0.936 8.632 0.940 0.646

S2VT [42] 0.897 0.902 8.512 0.904 0.642
S2VT (3-layer) [42] 0.903 0.911 8.592 0.911 0.648

HLSTM (SYS sampling) [6] 0.910 0.935 8.907 0.938 0.683
HLSTM [6] 0.924 0.942 9.019 0.944 0.699

HLSTM-attn [6] 0.929 0.948 9.084 0.951 0.703
Ours (WIC) 0.952 0.982 9.420 0.980 0.729

Ours (WIC-NGC) 0.949 0.979 9.416 0.979 0.725

Table III
METHOD COMPARISON ON CSL SPLIT II DATASET FOR UNSEEN SENTENCE RECOGNITION. NOTE THAT BETTER PERFORMANCE HAS A LOWER VALUE

FOR WER AND HIGHER VALUES FOR OTHER METRICS.

Method WER BLEU-1 CIDEr ROUGE-L METEOR
LSTM-CTC [14], [34] 0.757 0.343 0.241 0.362 0.111

S2VT [42] 0.670 0.466 0.479 0.461 0.189
S2VT (3-layer) [42] 0.652 0.475 0.477 0.465 0.186

HLSTM (SYS sampling) [6] 0.630 0.463 0.476 0.462 0.173
HLSTM [6] 0.662 0.487 0.561 0.481 0.193

HLSTM-attn [6] 0.641 0.508 0.605 0.503 0.205
Ours (WIC) 0.532 0.483 0.760 0.514 0.219

Ours (WIC-NGC) 0.509 0.505 0.641 0.537 0.223

For continuous SLR, CTC based approaches typically
conform to RNN-CTC structure after feature representa-
tion by CNNs. In this paper, LSTM-CTC is used as a
comparative method. S2VT [42] is a successful method
in encoder-decoder framework for video to text task. Its
encoder and decoder are both multilayer LSTMs. HLSTM
[6] is also an encoder-decoder based method especially for
continuous SLR. HLSTM (SYS sampling) conduct a system-
atic sampling operation for a fixed-length vector. Addition-
ally, HLSTM-attn adopts attention mechanism on the basic
HLSTM network. Compared to the above architectures, our
proposed methods (i.e., without NGC and with NGC) are
novel and effective. We explicitly recognize every word and
n-gram, instead of learning the whole sentence in CTC
based methods. The latter may be confused to tackle the
complicated word relationships inside sentences. Moreover,
our methods are rarely disturbed by error accumulation,
which is a common problem in encoder-decoder based
methods.

The comparison results on CSL Split I are shown in Table
II. For all metrics in the table, a higher value indicates a
better performance. Apparently, our two methods are com-
parable and outperform other methods significantly, which
demonstrates the superiority of our novel architecture for
continuous SLR. Table III depicts the method comparison
on CSL Split II. Note that better performance has a lower
value for WER and higher values for the rest of the metrics.
For CSL Split II, the sentences in the training set and testing
set are different, but the specific phrases appear in both sets,
which is more in line with reality and challenging. With

this setting, the NGC module has greater potential to learn
phrases and help recognize the sign sentences. It can be
seen from the results that NGC plays a significant role in
performance improvement, compared to the basic method
with only the WIC module.

V. CONCLUSION

In this paper, a novel deep architecture with multiple
grammatical-rule-based classifiers is proposed for continu-
ous sign language recognition. We formulate the sentence
recognition task as a classification task for word and n-grams
by introducing the WIC module and NGC module. We train
the network by minimizing the joint classification loss and
use a greedy algorithm for sentence inference. Extensive
experiments are conducted on a large-scale benchmark, and
the results show the effectiveness of our proposed methods.
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