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Abstract

In this paper, we propose an alignment network with it-
erative optimization for weakly supervised continuous sign
language recognition. Our framework consists of two mod-
ules: a 3D convolutional residual network (3D-ResNet) for
feature learning and an encoder-decoder network with con-
nectionist temporal classification (CTC) for sequence mod-
elling. The above two modules are optimized in an alter-
nate way. In the encoder-decoder sequence learning net-
work, two decoders are included, i.e., LSTM decoder and
CTC decoder. Both decoders are jointly trained by maxi-
mum likelihood criterion with a soft Dynamic Time Warping
(soft-DTW) alignment constraint. The warping path, which
indicates the possible alignment between input video clips
and sign words, is used to fine-tune the 3D-ResNet as train-
ing labels with classification loss. After fine-tuning, the im-
proved features are extracted for optimization of encoder-
decoder sequence learning network in next iteration. The
proposed algorithm is evaluated on two large scale contin-
uous sign language recognition benchmarks, i.e., RWTH-
PHOENIX-Weather and CSL. Experimental results demon-
strate the effectiveness of our proposed method.

1. Introduction
As one of the most important ways to communicate with

the deaf-mute, sign language (SL) is used by millions of
people with hearing or spoken damage in their daily life.
However, due to the lack of systematic study for sign lan-
guage, it becomes very difficult for many people to com-
municate with the deaf-mute. In order to make such com-
munication more convenient, it’s necessary to develop an
effective algorithm for sign language recognition (SLR).
Recently, more and more researchers turn their attention to
sign language recognition, not only for the social impacts,
but also with academic explorations.

Comparing to isolated SLR [16, 22, 42, 43], i.e., recog-
nition of words or gestures [31], which is similar to action
recognition [19, 24], continuous SLR [9, 26, 29] is much
more complicated since there is no rigid annotation of text
word to video clip for a complete sign video. As a kind

of weakly supervised sequence learning task, the key idea
for continuous SLR is to learn the mapping between a sign
video and its corresponding annotation of text sentence.
Continuous SLR task is well defined with a very standard
formulation, since the sign translation result is strictly con-
strained in grammar.

So far, the existing methods on continuous SLR can be
grouped into two categories based on the involved feature
representation, i.e., hand-crafted feature based and deep
learning based methods. Early works [35] mainly use hand-
crafted features together with statistical sequence modelling
methods such as Hidden Markov Model (HMM) or Hid-
den Conditional Random Fields (HCRF). Starner et al. [35]
present two real-time HMM-based systems for recognizing
sentence-level continuous American Sign Language (ASL).
Later on, Wang et al. [40] derive a discriminative sequence
model with Hidden Conditional Random Field (HCRF) for
gesture recognition, in order to solve the issue of long-range
dependencies among observations in HMM.

Recently, benefitting from the development of deep
learning, in sign language recognition, there have witnessed
some breakthroughs. With the appearance of large scale
continuous sign language datasets [9, 23, 25], deep learn-
ing based continuous SLR methods gradually become the
mainstream. With the powerful video representations by
residual network (ResNet) [18] and 3D convolutional neu-
ral network (3D-CNN) [33, 37], deep learning methods for
continuous SLR achieve state-of-the-art performance. Cui
et al. [10] propose to use recurrent convolutional neural
networks with staged optimization to recognize continuous
sign language. Another work [23] with hierarchical atten-
tion in latent space also shows the superiority of deep learn-
ing to hand-crafted feature based methods.

In this paper, we propose a new deep learning archi-
tecture for continuous SLR. Our framework includes a 3D
residual network (3D-ResNet) for feature extraction and an
encoder-decoder network for sequence modelling. Consid-
ering the particularity of continuous SLR crossing com-
puter vision and natural language processing, we explore
the technics in video representation and understanding, as
well as the sequence modelling with grammar. We unify
the visual representation learning and sequence modeling in



our framework and make joint optimization over these two
modules. The main contributions of this paper are summa-
rized as follows:

a) A unified deep learning architecture integrating encoder-
decoder network and connectionist temporal classifica-
tion (CTC) for continuous sign language recognition.

b) A soft dynamic time warping (soft-DTW) alignment
constraint between the LSTM and CTC decoders, which
indicates the temporal segmentation in sign videos.

c) Iterative optimization strategy to train feature extractor
and encoder-decoder network alternately with alignment
proposals by warping path.

We organize the rest of this paper as follows: after re-
viewing the related works in Section 2, we elaborate our
proposed architecture and iterative optimization algorithm
in Section 3 and Section 4, respectively. In Section 5, we
conduct a series of experiments with discussions and anal-
ysis. At last, we conclude our work in Section 6.

2. Related Works
Video-based continuous SLR systems basically consist

of a feature extractor and a sequence modelling module,
where the latter is usually achieved via encoder-decoder
network or connectionist temporal classification. In this
section, we briefly review the works related continuous SLR
from the following two aspects.

2.1. Video Representation

Video representation plays a significant role for many
computer vision tasks, e.g., action recognition [24, 33, 37]
and video captioning [5]. Since Ji et al. [24] apply 3D con-
volutional neural network (3D-CNN) to action recognition
task [4, 17], 3D-CNN has become one of the most famous
architectures for video representation. Variants of different
improved 3D-CNN architectures appear for different vision
task. Meanwhile, deep residual network (ResNet) [18] has
shown powerful capacity for image representation. Inspired
by the recent successes of ResNet in numerous challenging
image recognition tasks, Qiu et al. develop a new family of
building modules named Pseudo-3D (P3D) blocks [33] to
replace 2D residual units in ResNet. The potential capacity
of combining the residual networks and 3D convolutional
networks for video representation is demonstrated in [17].

2.2. Sequence Modelling

The end-to-end sequence learning methods are typically
grouped in two types: attention-based encoder-decoder
[7, 8, 38] network and connectionist temporal classification
(CTC)-based network [12, 21]. Encoder-decoder network is
first proposed for machine translation in [7]. The encoder-
decoder architecture consists of two recurrent neural net-
works (RNN) that act as a pair of encoder and decoder pair.

The encoder maps a variable-length source sequence to a
fixed-length vector, while the decoder maps the vector rep-
resentation back to a variable-length target sequence. Al-
though the encoder-decoder network has been widely used
for speech recognition [8] and video captioning [2], there
still remains some limitation when modelling long-term de-
pendency. To overcome this issue, Bahdanau et al. [1] in-
troduce attention mechanism into encoder-decoder network
to learn the correspondence between source sequence and
target sequence. Following that, more and more different
attention methods [2, 30, 41, 36] are proposed to improve
the encoder-decoder networks for specific tasks.

Connectionist temporal classification (CTC) [12] is an-
other end-to-end sequence learning model for speech and
hand writing recognition [13, 21]. CTC is able to deal with
unsegmented input data, and learn the correspondence be-
tween the input sequence and output sequence. It is appro-
priate for continuous SLR, since continuous SLR is some-
how a kind of weakly supervised sequence learning prob-
lem. With the superiority of CTC, Cui et al. [10] achieve
the state-of-the-art performance for continuous SLR.

3. Alignment Network Architecture
In this section, we present a novel deep learning frame-

work for continuous SLR. Our method integrates the
encoder-decoder network and connectionist temporal clas-
sification into a unified deep architecture. To explore
the correspondence between the input sequence and target
translation, we use soft dynamic time warping (soft-DTW)
to align the CTC-decoder and LSTM-decoder.

3.1. Framework and Formulation

Continuous SLR deals with a sequence mapping from a
video with T frames V = {xt ∈ Rh×w×c} = {xt}Tt=1 to
a L-word sequence s = {si ∈ V|i = 1, · · · , L} , where
h × w is the size of image xt, c is 3 for an RGB video.
The mathematic formulation of continuous SLR is based
on Bayes decision theory, and the translated sentence ŝ is
estimated with the most probable word sequence among all
possible sequences s∗ as follows,

ŝ = arg max
s∈s∗

p(s|V ). (1)

Figure 1 illustrates the framework of our continuous SLR
system. The input to the framework is sign video with
paired sentence-level annotation. Our continuous SLR sys-
tem consists of the following four tiers of neural network.

1) Feature Extractor With the input of video clip se-
quence, 3D-ResNet coverts it into a fixed-length feature,
which summarizes the spatial and temporal information.

2) Sequence Encoder The sequential video descriptors ex-
tracted by 3D-ResNet are modelled by a 2-layer Bidirec-
tional Long Short-Term Memory (Bi-LSTM) encoder.
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Figure 1: Overview of our SLR framework. The system consists of a 3D-ResNet and an encoder-decoder network with
connectionist temporal classification. The CTC decoder and LSTM decoder are aligned with soft dynamic time warping con-
straint. The inner-product layer projects the BLSTM and LSTM outputs into categorical probabilities for word recognition.

3) Target Decoders To predict the target sequence, two
decoders are embedded into the network, which are
connectionist temporal classification (CTC) decoder and
LSTM decoder, respectively.

4) Alignment Constraint The soft-DTW constraint is used
to align the CTC-decoder and LSTM-decoder, which
both describe the probability distribution of the target
sequence.

The following parts of this section will elaborate each
module of our framework in detail.

3.2. Video Representation: 3D-ResNet

3D-CNN has been widely applied for video representa-
tion in action recognition [24, 37] and sign language recog-
nition [23, 32], and achieves state-of-the-art performance.
Considering the successes of residual network in different
computer vision tasks, we use 3D residual network (3D-
ResNet) to represent video clips, which inherits the superi-
ority of both two models.

Given a sign video V = (x1, · · · , xT ) = {xt}Tt=1 with
T frames, where xi is the ith frame in the video, a sliding
window is moved along the image sequence to generate a
set of ordered video clips. In this way, the sign video is
denoted as V = (v1, · · · , vN ) = {vt}Nt=1 with N clips. We
use Fθ to represent 3D-ResNet feature extractor, where θ
is the network weight. For each video clip vt, we get the
representation ft = Fθ(vt) ∈ Rd by passing it through the
3D-ResNet, where d is the dimension of the video feature.
Thus, the sign video is represented as a sequence of 3D-
CNN features as follows,

FN = (f1, · · · , fN ) = {FΘ(vt)}Nt=1. (2)

Considering the GPU memory and computational cost for
low latency, we use an 18-layer 3D-ResNet, which is light
and powerful enough for sign video representation.

3.3. Temporal Encoder: Bidirectional LSTMs

Recurrent neural network has made huge success for var-
ious of sequence processing tasks, e.g., speech recognition
[14, 21], neural machine translation [6], and video caption-
ing [2]. One of the most popular RNN architectures is
Long Short-Term Memory (LSTM) [20], which preserves
the long term dependencies to avoid vanishing gradients
compared to traditional RNN. LSTM units use purpose-
built memory cells to store and pass information, which is
better to explore the long term dependencies. The current
status of the LSTM unit is described with cell state Ct and
hidden state ht. The most fancy idea of LSTM is the use of
gate structures that optionally let information through.

One shortcoming of LSTM is that it only models the cor-
relations between the current input and the previous time
steps. The inputs after current time step t make no contri-
bution when generating the LSTM output. In continuous
SLR, the sign video represents a semantic sentence with
grammatical rules, which means both forward and back-
ward frames should be taken into consideration. To this end,
we use a bidirectional LSTM (BLSTM) to encoder the in-
put sign video. The basic idea of BLSTM is to present the
training sequence forwards and backwards to two separate
LSTMs, and concatenate the two outputs before feeding to
the deeper layer. This means that for current time step, the
output of BLSTM has the complete sequential information
over all time steps before and after it. We useR to represent
BLSTM, then the output of encoder is denoted as follows,

E = {et}Nt=1 = R({ft}Nt=1). (3)



The outputs are embedded into non-normalized categorical
probabilities of word-level labels in the size of vocabulary
by a fully-connected layer as follows,

yt = Wfc1 · et + bfc1. (4)

For a sign video with N clips, the probability distribution
characterized by BLSTM can be written as follows,

Y = (Yt,l) = [y1, y2, · · · , yN ]T , (5)

where Yt,l is the probability of tth clip belonging to word l.

3.4. Target Decoders: LSTM and CTC

To decode the target sentence from the sign video, we use
two kinds of decoders, i.e., LSTM decoder with attention
mechanism and CTC decoder.

3.4.1 Attention-aware LSTM Decoder

Following the BLSTM encoder, the LSTM decoder gener-
ates corresponding sentence from the encoder output. After
all input clips going through the BLSTM, the LSTM de-
coder is fed with the beginning-of-sentence (<BOS>) tag,
which prompts the network to start decoding the current
hidden states into a sequence of words. In training stage, the
model maximizes the log-likelihood of the target sentence
given the hidden states and the previous words. While in
inference, we choose the word with maximum probability
until it emits the ending-of-sentence (<EOS>) token.

We apply attention mechanism [1] for LSTM decoder.
The decoder output for the kth word is written as follows,

dk = Decoderlstm(ck, sk, h
d
k−1), (6)

where ck is context vector, sk and hdk−1 are embedded word
and hidden state of the decoder, respectively. The LSTM is
connected to an inner-product layer to project the LSTM
output into categorical probability with M classes, where
M = |V| is the vocabulary size. The final activation of the
inner-product layer is defined as follows,

zk = Wfc2 · dk + bfc2. (7)

Similar to Section 3.3, the probability distribution of the
translated sentences is formulated as follows,

Z = (Zk,l) = [z1, z2, · · · , zL]T , (8)

where L is the length of sentence, and Zk,l is the probability
of sk belonging to word label l given sk−1.

3.4.2 CTC Decoder

Connectionist temporal classification (CTC) [12] is a pop-
ular sequence learning algorithm, which models the map-
ping between input sequence and target sequence. The out-
put of inner-product layer following with BLSTM encoder

is corresponded to the probability distribution of word la-
bels. CTC approach decodes the target sentence from the
probability matrix Y explained in Section 3.3 by introduc-
ing a blank label (∗) as an assistant token. Define a path
π = (π1, · · · , πT ), πt ∈ V

⋃
{∗} on input sequence, where

V is the sign vocabulary. The probability for path π given
sign video V = {vt}Nt=1 is calculated as follows,

p(π|V ) =

N∏
t=1

p(πt|vt) =

N∏
t=1

Yt,πt . (9)

To get the final decoded sequence without blanks, CTC
defines a many-to-one mapping M, which removes the
repeated labels and blanks, e.g., M(r ∗ aa ∗ i ∗ n) =
M(r ∗ a ∗ i ∗ n) = rain. The probability of the sentence
s = (s1, · · · , sL) decoded by CTC is the summation of the
probabilities for all possible paths as follows,

pctc(s|V ) =
∑

π∈M−1(s)

p(π|V ), (10)

whereM−1 is the inverse mapping ofM, i.e.,M−1(s) =
{π|M(π) = s}.

3.5. Sequence Alignment: Soft DTW

We apply two kinds of decoders to our network intro-
duced in Section 3.4. Essentially, there are somehow poten-
tial correlations between these two probability distributions
Y and Z for CTC decoder and LSTM decoder, since they
both describe the same target sentence. Hence, we aim to
maximize the similarity between Y and Z. However, the
length of sentences generated from different decoders may
not equal each other. To evaluate the similarity between
various length sequences, we use soft dynamic time warp-
ing (soft-DTW) [11] to get the distance between Y and Z,
as well as the warping path.

Soft-DTW is a differentiable learning distance between
time series, building upon the original dynamic time warp-
ing (DTW) [34] discrepancy. The DTW algorithm is used
to find the minimal accumulating distance of two sequences
and the temporal warping path. Given two sequences u =
(u1, · · · , um) and v = (v1, · · · , vn), the DTW distance for
subsequence ui = (u1, · · · , ui) and vj = (v1, · · · , vj) is
denoted as Di,j and defined as follows,

Di,j = di,j + min(Di−1,j , Di,j−1, Di−1,j−1), (11)

where
di,j = ||ui − vj ||2. (12)

In order to make the DTW discrepancy differentiable,
soft-DTW algorithm is taken by introducing the generalized
min operator, with a smoothing parameter γ ≥ 0 [11]:

minγ
i
{ai} =


min
i
{ai}, γ = 0.

− γ log
∑
i

e−ai/γ , γ > 0.
(13)
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Figure 2: Illustration of our iterative training algorithm.
After encoding the sequential features extracted by 3D-
ResNet, the CTC decoder and LSTM decoder decode them
into sign glosses. The decoders also generate the alignment
proposal with the warping path by soft-DTW to fine-tune
the 3D-ResNet in next iteration.

With the basic formulation of soft-DTW, the distance be-
tween the probability distributions Y and Z is defined as

Dp = DN,L(Y ,Z), (14)

where N and L are the sequence length for Y and Z, re-
spectively.

We can recover the warping path by backtracking. The
warping path indicates the possible alignment between sign
clips and words, which is a fine-grained understanding for
sign videos. Denote the warping path as Π = {(p, q)|p ≤
N, q ≤ L}, the label `p of the pth clip is obtained by

`p = sq. (15)

4. Optimization and Decoding
In this section, we will introduce the objective function

and iterative training algorithm to optimize the network.
Besides, a joint decoding approach combining the CTC de-
coder and LSTM decoder is proposed for better recognition.

4.1. Objective Function

In Section 3.4, we describe two kinds of decoders.
Both LSTM decoder and CTC decoder are trained with
maximum-likelihood criterion. Given a sign video V and
its corresponding annotation s = (s1, · · · , sL), the loss
function for CTC decoder is formulated as

Lctc = − ln pctc(s|V ), (16)

where pctc(s|V ) is the posterior probability of s given V
which is defined in Equation 10.

For LSTM decoder, the probability of s given V is

plstm(s|V ) =

L∏
i=1

p(si|si−1) =

L∏
i=1

Zi,si . (17)

Similar to Lctc, the LSTM loss function is defined as

Llstm = − ln plstm(s|V ). (18)

Besides, there is an alignment term for CTC decoder and
LSTM decoder, which is constrained by soft-DTW dis-
tance. In order to make the two probability distributions
get closer to each other, we define an alignment loss as

Lalign = Dp(Y ,Z), (19)

where Dp is described in Equation 14.
We jointly train the network and the objective function

for optimization is presented as

L = λLctc + (1− λ)Llstm + Lalign + µ||ω||2, (20)

where λ is a tunable hyper-parameter which balances the
potential significance of the two decoders, and µ||ω||2 is a
regularization term to avoid overfitting.

4.2. Optimization Strategy

While recognizing continuous sign videos, 3D-ResNet
plays a significant role as feature representation learning
module. Representative features contribute to good perfor-
mance. When training the network in an end-to-end way,
the objective loss has limited contribution to the learning of
parameters for low layers of 3D-ResNet due to the chain
rules of back-propagation. To alleviate this issue, an alter-
native is to learn explicit 3D-CNN features by optimizing
feature extractor directly with clip level labels. However, in
our continuous SLR task, such labels are unavailable.

To address the above problem, we propose to use soft-
DTW alignment proposals as pseudo-labels to learn repre-
sentative 3D-CNN features, and optimize feature extractor
and sequence learning module in an EM-like iterations, as
shown in Figure 2. In our method, we firstly use 3D-ResNet
to extract features from a sign video. After that, we train the
encoder-decoder network by minimizing the total loss L.
After convergence, the network provides the warping path
between the input clips and words by soft-DTW. For a better
feature representation of 3D-ResNet, we use the alignment
proposal described in Equation 15 as the supervision for
video clips to fine-tune the feature extractor (3D-ResNet)
with cross entropy classification loss. With the optimized
3D-ResNet, we extract features with stronger representa-
tive capacity to train the encoder-decoder network in next
iteration. These two parts of the network are alternately op-
timized until both of them converge to optimum.

4.3. Decoding

This section introduces the decoding method, which
potentially utilizes both benefits of CTC decoder and
attention-aware LSTM decoder. Our network allows CTC



decoder and LSTM decoders to decode the sign video in-
dependently. To combine the superiority of both decoders,
we use a two-pass re-ranking approach to fuse the results.
In inference stage, CTC decoder obtains a set of complete
hypotheses sentence as candidates using beam search. We
re-rank the candidates using both CTC and LSTM decoders.
Suppose we have K candidates C = {si|i = 1, · · · ,K},
the score for hypotheses sentence si is represented as

r(si) = α ln pctc(s
i|V )+(1−α) ln plstm(si|V )+β lnLi,

(21)
where α is a tunable parameter, Li is the length of si, and
β lnLi is an additional length term to balance the score for
long sequence. GivenK-best hypotheses produced by CTC
decoder via beam search, we determine the final result ŝ by

ŝ = arg max
s

r(s). (22)

5. Experiments
We provide extensive experiments to evaluate the effec-

tiveness of our method. The datasets and evaluation metric
are introduced firstly. After that, we give the details about
experimental setup and analyze the experimental results.

5.1. Dataset and Evaluation

We conduct our experiments on two public datasets,
which are RWTH-PHOENIX-Weather multi-signer [25] for
German SLR and CSL [23] for Chinese SLR, respec-
tively. RWTH-PHOENIX-Weather dataset contains around
7K sign videos within a total of 77K words. RGB videos
and their corresponding annotations are provided. The an-
notations are about weather forecast in German Sign Lan-
guage. All videos are of 25 frames per second (FPS) with
the resolution of 210×260. The dataset is divided into three
parts: 5, 672 instances for training, 540 for validation, and
629 for testing. The CSL dataset has 178 Chinese words
which are mostly used in daily communication. The corpus
contains 100 sentences. Each sentence is performed by 50
signers. Therefore, there are 5,000 videos in this dataset. In
average, 5 words (phases) are included in each sentence.

In continuous SLR, word error rate (WER) is the most
widely-used metric to evaluate the performance. WER is
essentially an edit distance. In other words, WER indicates
the least operations of substitution, insertion, and deletion to
transform the predict sentence into the reference sequence:

WER =
#substitution + #insertion + #deletion

length of reference
.

(23)
Besides, following this work [15], we use some other eval-
uation metrics on CSL dataset, including precision and
Acc-w, which are the ratio of strictly correct sentences and
the ratio of correct words in reference sentence, respec-
tively. We also adopt semantic evaluation metrics which
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Figure 3: The effect of weight parameter λ in Equation 20
at iteration-0.

widely used in image caption and neural machine transla-
tion (NMT), i.e., CIDEr, BLEU, ROUGE-L, and METEOR.

5.2. Experimental Setting

Our model consists of two modules: 3D-ResNet for fea-
ture learning and encoder-decoder network with soft-DTW
alignment for sequence learning. We use iterative optimiza-
tion strategy described in 4.2 to train these two parts alter-
nately. In this section, the experiments for parameter selec-
tion are conducted on RWTH-PHOENIX-Weather dataset.

The input of 3D-ResNet is required to be fixed-length
video clips. Hence, we conduct a sliding window on raw
videos to generate clips. The window size is set to be 8
with a stride of 4, which means there is 50% overlap be-
tween adjacent clips. The activations of 512-dimensional
pool5 layer from 3D-ResNet are extracted as the represen-
tation of video clips. While training the feature extractor,
we use stochastic gradient descent (SGD) optimizer to train
our network. The initial learning rate and weight decay are
set to be 1 × 10−3 and 5 × 10−5, respectively. At the ini-
tial step, to extract features for encoder-decoder network,
the 3D-ResNet is pre-trained on an isolated sign language
recognition dataset released in [43]. The hidden states of
the 2-layer BLSTM encoder is set to be 1024.

In order to set an optimal weight λ in Equation 20, we
conduct experiments with different λ using the features ex-
tracted in initial step, as shown in Figure 3. For 0 < λ < 1,
we use jointly re-ranking decoding algorithm introduced in
Section 4.3. The hyper-parameters α and β in Equation 21
are set to 0.85 and 0.7, respectively. Note that when λ = 0
or 1, it means we only use one of the decoders for training
and inference without soft-DTW alignment. From the re-
sults, we find that λ = 0.9 is the best option. Hence, all
following experiments use the setup of λ = 0.9.

5.3. Results on RWTH-PHOENIX-Weather

In this section, we show the performance comparisons on
RWTH-PHOENIX-Weather. We analyze the performance
for different optimization iterations and give an example il-
lustrating the alignment between video clips and annotation.
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nism.

Iterations Dev (%) Test (%)
del / ins WER del / ins WER

Iter-0 19.46 / 2.74 57.72 20.26 / 2.49 57.90
Iter-1 15.01 / 2.69 41.48 14.12 / 2.22 40.38
Iter-2 13.16 / 2.83 39.11 13.40 / 2.74 39.17
Iter-3 12.68 / 2.93 37.39 12.94 / 2.58 37.56
Iter-4 12.86 / 2.64 37.07 12.97 / 2.47 36.71

Table 1: Word error rate (WER) for different iterations on
RWTH-PHOENIX-Weather-2014 (the lower the better).

5.3.1 Iterative Optimization Results

Our network is optimized by iterative training. Table 1
shows the performance on dev set and test set in different
iterations. In this table, “del” and “ins” stand for deletion
error and insertion error, respectively. It can be observed
that the word error rate (WER) declines with the training
iterations progress, which demonstrates the effectiveness of
the iterative optimization strategy. After 4 iterations, we
stop iterative training progress, since the WER does not de-
cline anymore and the network converges to optimum.

Besides, Figure 4 gives the comparison for whether
there is alignment mechanism in the network. As the Fig-
ure shows, CTC-Only and LSTM-Only correspond to train-
ing with only CTC loss Lctc or LSTM cross entropy loss
Llstm, respectively. Align means the network is trained
with alignment constraint and jointly decodes the sentence
with both decoders. From Figure 4, we notice that the net-
work with alignment constraint outperforms another two
networks with different objective functions at every itera-
tion. The experimental results show that alignment mecha-
nism works well in our proposed network.

5.3.2 Alignment and Comparisons

In this section, we give an example qualitatively describing
the alignment between the input video and its correspond-
ing annotation. Additionally, we discuss the performance
of our method together with the state-of-the-arts on RWTH-

Methods Dev (%) Test (%)
del / ins WER del / ins WER

1-Mio-Hands [25, 27] 16.3 / 4.6 47.1 15.2 / 4.6 45.1
CNN-Hybrid [28] 12.6 / 5.1 38.3 11.1 / 5.7 38.8

SubUNet [3] 14.6 / 4.0 40.8 14.3 / 4.0 40.7
Staged-Opt [10] 13.7 / 7.3 39.4 12.2 / 7.5 38.7

CTF [39] 12.8 / 5.2 37.9 11.9 / 5.6 37.8
Dilated-SLR [32] 8,3 / 4.8 38.0 7.6 / 4.8 37.3

LS-HAN [23] - - - 38.3
Ours (LSTM) 13.8 / 3.3 45.6 13.6 / 3.3 46.1
Ours (CTC) 11.4 / 3.8 38.2 11.9 / 3.5 37.9

Ours (Align-end2end) 12.6 / 2.2 69.1 22.0 / 2.6 69.3
Ours (Align-iOpt) 12.9 / 2.6 37.1 13.0 / 2.5 36.7

Table 2: Word error rate (WER) on RWTH-PHOENIX-
Weather-2014 (the lower the better).

PHOENIX-Weather multi-signer dataset.
Figure 5 shows an example1 of alignment results from

Dev set. All clips are from the same sign video by order.
Each clip is aligned to its corresponding word. The period
of appearance for different sign word may be different in
the sign video. Our network has the capacity of exploring
the sequential alignment.

We evaluate the performance of our approach on the
large-scale continuous SLR benchmark RWTH-PHOENIX-
Weather, and the comparison results 2 to different methods
are shown in Table 2. 1-Mio-Hands [25, 27] achieves an
WERs of 47.1% and 45.1% on dev set and test set, respec-
tively, by embedding a CNN within an iterative EM algo-
rithm. CNN-Hybrid [28] introduces an end-to-end embed-
ding of a CNN into a HMM, while interpreting the out-
puts of CNN in a truly Bayesian fashion. The basic ar-
chitectures in SubUNet [3] and Staged-Opt [10] are both
CNN+BLSTM+CTC. The main difference is that Staged-
Opt proposes a staged optimization algorithm with detec-
tion net, and it achieves a better performance than Sub-
UNet. Another two works CTF [39] and Dilated-SLR [32]
are both CTC-based approach. In addition, LS-HAN [23] is
an encoder-decoder framework with hierarchical attention
mechanism for better recognition.

Comparing to the results which use only one of the
decoders, i.e., LSTM or CTC, for training and inference,
the network using soft-DTW alignment for both decoders
with iterative optimization strategy achieves the best per-
formances. We also train our network in an end-to-end
way, denoted as Align-end2end. However, the results are
not good enough. These comparative experiments illustrate
both the alignment mechanism and iterative optimization
work well in our approach.

1Video ID: 03February 2010 Wednesday tagesschau default-0.
2Since WER is the summation of insertion error, deletion error, and

substitution error, we only list 3 of them without substitution error.
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Figure 5: An example for alignment results between the video clips and sentence annotation in German from Dev set.

Method Split I Split II
Precision BLEU-1 CIDEr ROUGE-L METEOR Acc-w BLEU-1 CIDEr ROUGE-L METEOR WER

LSTM&CTC [12, 20] 0.858 0.936 8.632 0.940 0.646 0.332 0.343 0.241 0.362 0.111 0.757
S2VT [38] 0.897 0.902 8.512 0.904 0.642 0.457 0.466 0.479 0.461 0.189 0.670

S2VT (3-layer) [38] 0.903 0.911 8.592 0.911 0.648 0.461 0.475 0.477 0.465 0.186 0.652
HLSTM (SYS sampling) [15] 0.910 0.935 8.907 0.938 0.683 0.459 0.463 0.476 0.462 0.173 0.630

HLSTM [15] 0.924 0.942 9.019 0.944 0.699 0.482 0.487 0.561 0.481 0.193 0.662
HLSTM-attn [15] 0.929 0.948 9.084 0.951 0.703 0.506 0.508 0.605 0.503 0.205 0.641

Ours 0.939 0.980 9.342 0.981 0.713 0.670 0.724 3.946 0.716 0.383 0.327

Table 3: Evaluation on CSL Dataset Split I for seen sentence recognition and Split II for unseen sentence recognition (the
lower the better for WER, the higher the better for other metrics).

5.4. Results on CSL

The CSL dataset contains a smaller vocabulary com-
paring with RWTH-PHOENIX-Weather. We use the same
hyper-parameters on both datasets. Following this work
[15], the training set and testing set are generated with two
different strategies. (a) Split I - signer independent test:
We use the videos performed by 40 signers for training, and
the remaining videos of 10 signers for testing. The sen-
tences of training and testing sets are the same, while the
signers are different. (b) Split II - unseen sentence test:
We choose 94 sentences (94× 50 = 3700 videos) for train-
ing, and the remaining 6 sentences (6 × 50 = 300 videos)
for testing. The sentences in testing set are different from
which in training set, while the vocabulary in testing set is
a subset of vocabulary in training set.

We pre-train 3D-ResNet on the isolated SLR dataset
[43]. Since the vocabularies in CSL dataset are all from iso-
lated SLR dataset, we get good enough performances with-
out iterations. The performances of our method comparing
with existing methods over the CSL dataset are summarized
in Table 3. We compare our method with LSTM&CTC,
S2VT [38], and HLSTM [15] over both splits. Experimen-
tal results show that our method outperforms the state-of-
the-art methods over Split I with signer-independence test.
In continuous SLR, it’s quite difficult to recognize the sen-
tences which are not appeared in training set. To evaluate
the capability of our method for such case, we conduct ex-
periments on CSL Split II, and the performances compar-
ing with other methods are shown in Table 3 (Split II). Our

method outperforms the state-of-the-art methods by a large
margin over all evaluation metrics, including Acc-w, CIDEr,
BLEU, ROUGE-L, METEOR, and WER. Experimental re-
sults on Split II indicate that our method has a strong capa-
bility to deal with the unseen sentence recognition problem.

6. Conclusions
In this paper, we propose a new deep architecture based

on 3D-ResNet and encoder-decoder network with connec-
tionist temporal classification by iterative optimization for
continuous SLR. We jointly train encoder-decoder network
by minimizing CTC loss and cross-entropy loss, addition-
ally with a soft-DTW alignment constraint. The clip labels
generated by the warping path, which aligns each clip to its
corresponding sign word, are regarded as the supervision
to fine-tune the feature extractor. The 3D-ResNet feature
extractor and encoder-decoder sequence modelling network
are alternately optimized step by step. Our method achieves
better performance on two public continuous SLR datasets
than the existing methods. Experimental results demon-
strate the effectiveness and superiority of our approach.
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