Energy Based Fast Event Retrieval in Video with Temporal Match Kernel

Junfu Pu¹ Yusuke Matsui² Fan Yang³² Shin'ichi Satoh²³

1. University of Science and Technology of China

- 2. National Institute of Informatics
 - 3. The University of Tokyo

- Introduction
- Background
- Matching with Energy
- □ Algorithm Speed up with PQ
- Experiments
- Conclusion

Introduction

Approach for fast content-based search in large video database

Introduction

Related work

- Jerome Revaud, et al., Event retrieval in large video collections with circulant temporal encoding, CVPR, 2013
- Matthijs Douze, et al., Stable hyper-pooling and query expansion for event detection, ICCV, 2013
- Sebastien Poullot, et.al, Temporal matching kernel with explicit feature maps, ACM MM, 2015

Contribution

- Simplify the similarity metric by calculating the energy of the score function
- Derive the energy formulation by Parseval's theorem
- Accelerate the computation with product quantization

Background

$$\mathbf{x} = (\mathbf{x}_{0}, \dots, \mathbf{x}_{t}, \dots) \quad \mathbf{y} = (\mathbf{y}_{0}, \dots, \mathbf{y}_{t}, \dots) \quad \text{time offset: } \Delta$$
A kernel defined with $\mathbf{x}, \mathbf{y}, \text{ and } \Delta$

$$\kappa_{\Delta}(\mathbf{x}, \mathbf{y}) \propto \sum_{t=0}^{\infty} \mathbf{x}_{t}^{T} \mathbf{y}_{t+\Delta} = \left(\sum_{t=0}^{\infty} \mathbf{x}_{t} \otimes \varphi(t)\right)^{T} \left(\sum_{t'=0}^{\infty} \mathbf{y}_{t'} \otimes \varphi(t'+\Delta)\right)^{T}$$

$$\psi_{0}(\mathbf{x}) \quad \psi_{0}(\mathbf{x}) \quad \psi_{0}(\mathbf{y})$$

$$\psi_{0}(\mathbf{x}) \quad \psi_{0}(\mathbf{y}) \quad \psi_{0}(\mathbf{y})$$

$$\psi_{0}(\mathbf{x}) = \begin{bmatrix} \sqrt{a_{0}} \\ \sqrt{a_{1}} \cos(\frac{2\pi}{T} t) \\ \sqrt{a_{1}} \sin(\frac{2\pi}{T} t) \\ \vdots \\ \sqrt{a_{m}} \cos(\frac{2\pi}{T} mt) \\ \sqrt{a_{m}} \sin(\frac{2\pi}{T} mt) \end{bmatrix} \quad \psi_{0}(\mathbf{x}) = \begin{bmatrix} \mathbf{V}_{0}^{T}, \mathbf{V}_{1,c}^{T}, \mathbf{V}_{1,s}^{T}, \dots, \mathbf{V}_{m,c}^{T}, \mathbf{V}_{m,s}^{T} \end{bmatrix}^{T}$$

$$\mathbf{V}_{0} = a_{0} \sum_{t=0}^{\infty} \mathbf{x}_{t} \cos(\frac{2\pi}{T} it) \in \mathbb{R}^{D}$$

$$\mathbf{V}_{i,s} = a_{i} \sum_{t=0}^{\infty} \mathbf{x}_{t} \sin(\frac{2\pi}{T} it) \in \mathbb{R}^{D}$$

a_i: the fourier coefficients

Background

Final Formulation

$$\kappa_{\mathbf{x},\mathbf{y}}(\Delta) = \left\langle \mathbf{V}_{0}^{(\mathbf{x})}, \mathbf{V}_{0}^{(\mathbf{y})} \right\rangle$$

+
$$\sum_{\substack{n=1\\m}}^{m} \cos(n \Delta) \left(\left\langle \mathbf{V}_{n,c}^{(\mathbf{x})}, \mathbf{V}_{n,c}^{(\mathbf{y})} \right\rangle + \left\langle \mathbf{V}_{n,s}^{(\mathbf{x})}, \mathbf{V}_{n,s}^{(\mathbf{y})} \right\rangle \right)$$

+
$$\sum_{\substack{n=1\\m}}^{m} \sin(n \Delta) \left(- \left\langle \mathbf{V}_{n,c}^{(\mathbf{x})}, \mathbf{V}_{n,s}^{(\mathbf{y})} \right\rangle + \left\langle \mathbf{V}_{n,s}^{(\mathbf{x})}, \mathbf{V}_{n,c}^{(\mathbf{y})} \right\rangle \right)$$

Similarity Score

Denote the Fourier series of f(x) as

$$f(x) = \frac{1}{2}c_0 + \sum_{n=1}^{m} c_n \cos(nx) + \sum_{n=1}^{m} s_n \sin(nx)$$

The energy of f(x) is

$$E(f(x)) = \int_{-\infty}^{\infty} [f(x)]^2 dx$$

According to the Parseval's Theorem

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} [f(x)]^2 \, dx = \sum_{i=1}^{n} (c_i^2 + s_i^2) + c_0^2$$

 $\square \text{ Matching with energy}$ The final form of the energy $\tilde{S}(\mathbf{x}, \mathbf{y})$ for $\kappa_{\mathbf{x}, \mathbf{y}}(\Delta)$ is $\tilde{S}(\mathbf{x}, \mathbf{y}) = E\left(\kappa_{\mathbf{x}, \mathbf{y}}(\Delta)\right)$ $= \sum_{n=1}^{m} \left[\left(\left\langle \mathbf{V}_{n,c}^{(\mathbf{x})}, \mathbf{V}_{n,c}^{(\mathbf{y})}\right\rangle + \left\langle \mathbf{V}_{n,s}^{(\mathbf{x})}, \mathbf{V}_{n,s}^{(\mathbf{y})}\right\rangle\right)^{2}$

Generalized formulation

$$S^{(p)}(\mathbf{x}, \mathbf{y}) = \sqrt[p]{\sum_{i=1}^{m} (c_i^2 + s_i^2)^p}$$
$$S^{(\infty)}(\mathbf{x}, \mathbf{y}) = \lim_{p \to \infty} \frac{1}{M} \sqrt[p]{\sum_{i=1}^{m} (c_i^2 + s_i^2)^p} = \max_n \{(c_n^2 + s_n^2)^p\}$$

8

Matching with energy

- Given a query video, go through the candidate in database
- Calculate the $\tilde{S}(\mathbf{x}, \mathbf{y})$ between query and candidate
- Retrieval with $\tilde{S}(\mathbf{x}, \mathbf{y})$

Advantages

- More stable (maximum of $S(\mathbf{x}, \mathbf{y})$ is sensitive to noise)
- Lower computational complexity
- Further accelerate the computation using approximate nearest neighbor method such as PQ

□ Algorithm speedup with PQ *j*th codebook c_{j*} generated from $\left\{ \mathbf{V}_{j,c}^{(\mathbf{x}_i)} : i \in \{1, ..., N\} \right\} \cup \left\{ \mathbf{V}_{j,s}^{(\mathbf{x}_i)} : i \in \{1, ..., N\} \right\}$

□ Searching steps

- Quantize query q to its ω nearest neighbors with $\tilde{S}(\mathbf{x}, \mathbf{y})$
- Compute the squared distances and dot product for each subquantizer *j* and each of its centroid *c*_{ji}
- Using the subvector-to-centroid distance, calculate the similarity score $\tilde{S}(\mathbf{x}, \mathbf{y})$
- Order the candidates by decreasing $\tilde{S}(\mathbf{x}, \mathbf{y})$

Experiments

EVent VidEo (EVVE) dataset [CVPR'13]

- 620 queries, 2375 database videos, 13 events
- 1024-D multi-VLAD frame descriptor
- Experimental results

Experiment

Results on EVVE and comparison

 Table 1: Performance (mAP and time) on EVVE. The bold values show the best score.

Event	Decolino	Ours			
No.	Dasenne	\widetilde{S}	\widetilde{S} +PQ	$S^{(\infty)}$ +PQ	
#1	0.1521	0.2013	0.1985	0.2483	
#2	0.2424	0.2503	0.2621	0.2133	
#3	0.1186	0.1130	0.0651	0.0905	
#4	0.1370	0.1390	0.1419	0.1467	
#5	0.2486	0.2538	0.2675	0.2671	
#6	0.2913	0.3189	0.3511	0.3917	
#7	0.1856	0.1854	0.1177	0.1139	
#8	0.2004	0.2216	0.2128	0.2736	
#9	0.6119	0.6351	0.6276	0.6728	
#10	0.3737	0.4519	0.4913	0.5529	
#11	0.7979	0.7879	0.8584	0.8218	
#12	0.2295	0.3084	0.3224	0.4344	
#13	0.6187	0.6331	0.6915	0.6762	
ave-mAP	0.3237	0.3461	0.3545	0.3772	
time	9.31s	1.74s	$pprox \mathbf{0.3s}$	$pprox \mathbf{0.3s}$	

Table 2: Comparison with state of the art.

methods	state of the art				Ours
	MMV	CTE	SHP	MMV+CTE	Ours
ave-mAP	0.334	0.352	0.363	0.376	0.377

Baseline (temporal match kernel): MM'15 MMV (mean-multiVLAD): CVPR'13 CTE (circulant temporal encoding): CVPR'13 SHP (stable hyper-pooling): ICCV'13

Conclusion

- Propose a fast event retrieval method in video database with temporal match kernel
- Use the energy of the score function as similarity metric
- Derive the simplified energy formulation by using Parsevals's theorem
- With the energy formulation, we use PQ to accelerate the computation
- Achieve competitive performance with the-state-ofthe-art

