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ABSTRACT

In this paper, we propose an approach to apply the Trans-
former with reinforcement learning (RL) for continuous sign
language recognition (CSLR) task. The Transformer has an
encoder-decoder structure, where the encoder network en-
codes the sign video into the context vector representation,
while the decoder network generates the target sentence word
by word based on the context vector. To avoid the intrinsic
defects of supervised learning (SL) in our task, e.g., the expo-
sure bias and non-differentiable task metrics issues, we pro-
pose to train the Transformer directly on non-differentiable
metrics, i.e., word error rate (WER), through RL. Moreover,
a policy gradient algorithm with baseline, which we cal-
l Self-critic REINFORCE, is employed to reduce variance
while training. Experimental results on RWTH-PHOENIX-
Weather benchmark verify the effectiveness of our method
and demonstrate that our method achieves the comparable
performance.

Index Terms— sign language recognition, reinforcement
learning, self-critic

1. INTRODUCTION

Millions of hearing-impaired people routinely use some vari-
ants of sign languages to communicate, however, it’s diffi-
cult to understand sign language for the hearing society. As
a result, there is a huge communication disorder between the
deaf-mute and the hearing people, which makes the automatic
translation of sign language meaningful and important.

Continuous sign language recognition (CSLR) aims at
translating sign videos into text sentences. Though signifi-
cant progress [1, 2, 3, 4] has been made, CSLR is still a very
challenging task. It requires a fine-grained understanding of
gestures, hand motions or even facial expressions in a video.
Meanwhile, there exist semantic gaps between videos and
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Fig. 1. An overview of the proposed method. We extract sign
language features from video using 3D-ResNet. The Transformer
translates the feature sequence to the target sentence. We train the
Transformer directly on word error rate (WER) through RL.

sentences, as well as the difficulty of frame or word level
alignment. To solve these challenges, we propose our CSLR
model, as shown in Fig. 1. First, we adopt a 3D convolutional
neural network to extract visual features from sign videos.
Recently, residual network (ResNet) [5] and 3D convolution-
al neural network (3D CNN [6, 7, 8]) have shown outstanding
performance in image and video representation, respectively.
Inspired by the superiorities of ResNet and 3D CNN, we em-
ploy a combined 3D residual convolutional neural network
(3D-ResNet) for feature extraction following CNN-DCN [9].
Second, we utilize a powerful neural machine translation
(NMT) model to translate sign videos into text sentences. Re-
cently, the Transformer [10], the first sequence transduction
model based entirely on attention, achieves state-of-the-art
performance on the English-German and English-French
translation tasks. Considering the similarity between NMT
and CLSR, we adopt the Transformer to bridge the semantic
gap between sign videos and text sentences.

However, the Transformer [10] (or LSTM [11], etc.) for
sequence transduction is typically trained to maximize the
likelihood of the next ground-truth word given the previous
ground-truth word using error back-propagation. This ap-
proach suffers a mismatch between training and testing since
at test-time the model uses the previously generated words
from the model distribution to predict the next word. This
exposure bias [12] results in error accumulation during gen-
eration at the test time, since the model has never been ex-
posed to its own predictions. Besides, there exist deviation
between optimization objectives, i.e., the cross-entropy loss,
during training and the non-differentiable evaluation metric-
s during testing. Recently, it has been shown that both the
exposure bias and non-differentiable task metrics issues can
be addressed through reinforcement learning (RL). Motivated
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by these works [13, 14, 15], we employ REINFORCE [16] to
train our CSLR model. Moreover, we append a baseline to
REINFORCE to form a self-critic architecture because of the
high variance of REINFORCE.

In summary, our major contributions are listed as follows:

• We propose a novel framework based on 3D-ResNet
and the Transformer for continuous sign language
recognition (CSLR). To the best of our knowledge,
we are the first to deploy the Transformer for sequence
learning in CSLR.

• We introduce an RL-based optimization strategy for our
CSLR model. Experiments on the RWTH-PHOENIX-
Weather demonstrate the effectiveness of our approach.

2. RELATED WORK

In this section, we briefly review some continuous sign lan-
guage recognition (CSLR) methods, and compactly introduce
some sequence generation tasks which are closely related to
our work.

CNN-LSTM based methods [17, 18] are very popular
for continuous sign language recognition (CSLR). Recent-
ly, some works such as [19, 20] have employed a CNN-
LSTM network with connectionist temporal classification
(CTC) [21] for CSLR, since CSLR task lacks supervision on
accurate temporal segmentation for sign words. In addition,
there are some approaches for CSLR which are based on oth-
er sequential models. Re-Sign [22] embeds a hidden markov
model (HMM) into a deep recurrent CNN-BLSTM network
with an iterative re-alignment approach for CSLR. CNN-
DCN [9] proposes a deep neural architecture composed by
3D-ResNet and dilated convolutional network [23] with CTC
loss for CSLR. Similarly, we employ the Transformer [10]
as the sequential model instead of LSTM to solve the CSLR
task.

Neural machine translation (NMT) is a typical sequence
learning task and has drawn much attention. Recently, the
Transformer [10] has achieved the state-of-the-art results on
both WMT2014 English-German and English-French transla-
tion tasks. Moreover, BR-CSGAN [24] proposes an approach
for applying GANs to NMT with the Transformer through
policy gradient methods. Actually, reinforcement learning
(RL) algorithms are widely used among sequence learning
tasks. MIXER [12] adopts the REINFORCE [16] algorithm
for text generation applications. Since REINFORCE suffers
from high variance, it requires a proper baseline. Therefore,
Bahdanau et al. [14] train another critic network to predic-
t the value of an output token. SCST [13] utilizes the out-
put of its own test-time inference algorithm to normalize the
rewards it experiences. Inspired by these works, we utilize
REINFORCE with a baseline to train our model.
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Fig. 2. The architecture of the Transformer [10].

3. OUR METHODS

In this section, we first propose a novel architecture based
on the Transformer for continuous sign language recognition
(CSLR). Then, we introduce our Self-critic REINFORCE for
network training in our CSLR model.

3.1. Model Architecture

Our CSLR model consists of two components: 3D-ResNet
for extracting video clip feature, and the Transformer which
translates the visual feature sequences into sentences.
3D-ResNet. It is a great challenge to extract sematic informa-
tion of sign language, which is contained in those elements of
gestures, hand motions or even facial expressions in videos,
for CSLR. Fortunately, 3D CNN has shown strong capability
for video representation based on spatio-temporal informa-
tion, since it considers the sequential relationship by tempo-
ral connections across frames. Following CNN-DCN [9], we
adopt the 18-layers 3D-ResNet, which only replaces the 2D
convolutional filters with 3D convolutional filters, for feature
extraction. Furthermore, the training method for 3D-ResNet
is the same as that introduced in CNN-DCN [9] as well.
The Transformer. The Transformer [10], as shown in Fig. 2,
with an encoder-decoder architecture, has shown strong capa-
bility in neural machine translation (NMT). The encoder of
the Transformer is composed of a stack of N identical lay-
ers. Each layer consists of a multi-head self-attention and a
simple position-wise fully connected feed-forward network.
The decoder is also composed of a stack of N identical lay-
ers. In addition to the two sub-layers in each encoder layer,
the decoder inserts a third sub-layer, which performs multi-
head attention over the output of the encoder stack. In the
CSLR task, the Transformer regards the sign videos as source
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language and translates the source language to the target lan-
guage (i.e., text sentences). The input of the encoder is the
video clip feature sequence extracted by 3D-ResNet. The in-
put of the decoder is the learned embedding of a sentence or
the beginning token of a sentence, while the decoder outputs
the predicted next-token probabilities.

3.2. Self-critic REINFORCE

CSLR as a RL problem. Generally, the Transformer is
trained using the cross-entropy loss. However, there ex-
ists deviation between the cross-entropy loss and the non-
differentiable evaluation metrics, i.e., WER. To directly op-
timize the WER metric, we cast our models in the reinforce-
ment rearning (RL) terminology. The Transformer, which
can be viewed as an “agent”, defines a policy pθ. The “agent”
consistently produces the “action”, i.e., the prediction of the
next token. We define the immediate reward r = 0 until the
end-of-sequence (EOS) token generates. And “1 − WER”
is received as the terminal reward denoted by R. To minimize
the negative expected cumulative reward with the discount
rate λ = 1, we formulate the goal as follows,

L(θ) = −Eωs∼pθ [R(ωs)], (1)

where ωs = (ωs1, · · · , ωsT ) and ωst is the word sampled from
the model at the time step t.
REINFORCE with baseline. According to [25], we com-
pute the gradient∇L(θ),

∇L(θ) = −Eωs∼pθ [R(ωs)∇θlogpθ(ωs)]. (2)

We use samples of the expectation to instantiate our generic
stochastic gradient ascent algorithm,

∇L(θ) ≈ −R(ωs)∇θlogpθ(ωs). (3)

This algorithm is called REINFORCE [16]. In addition, the
policy gradient given by REINFORCE can be generalized to
include a comparison of the action valueR(ωs) to an arbitrary
baseline b as long as it does not depend on the “action” ωs,

∇L(θ) = −Eωs∼pθ [(R(ωs)− b)∇θlogpθ(ωs)]. (4)

For each training case, we again approximate the expected
gradient with a single sample ωs ∼ pθ,

∇L(θ) ≈ −(R(ωs)− b)∇θlogpθ(ωs). (5)

Self-Critic REINFORCE. The central idea of the Self-critic
REINFORCE is to take the reward, which is obtained by
the Transformer under the inference algorithm used at the
test time, as the baseline for the REINFORCE. As shown in
Fig. 3, R(ωs) is the reward which represents the sentence
(i.e., (ωs1, · · · , ωsT )) generated through sampling based on its
probabilities. Similarly, R(ω̂) is the reward which evaluates
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Fig. 3. The illustration of Self-critic REINFORCE. The difference
between the reward for the sampled sentence and the reward ob-
tained by the estimated sentence under the test-time inference pro-
cedure is used to update the weight of the sampled sentence.

the sentence (i.e., (ω̂1, · · · , ω̂T )) obtained by the Transformer
under the inference algorithm used at test time, i.e.,

ω̂t = argmax
ωt

p(ωt). (6)

For each training case, the Self-critic REINFORCE gives:

∇L(θ) ≈ −(R(ωs)−R(ω̂))∇θlogpθ(ωs). (7)

Self-critic REINFORCE inherits all the advantage of
REINFORCE, as it not only directly optimizes the true,
sequence-level evaluation metric but also avoids the usual
scenario of having to learn a context-dependent estimate of
expected future rewards as a baseline. Since the Self-critic
REINFORCE baseline is based on the test-time estimation
under the current model, Self-critic REINFORCE is forced
to improve the performance of the model under the infer-
ence algorithm used at the test time. Besides, Self-critic
REINFORCE avoids all the inherent training difficulties as-
sociated with actor-critic methods, where a second “critic”
network must be trained to estimate value functions, and the
actor must be trained on estimated value functions rather than
actual rewards.

4. EXPERIMENTS

In this section, we first introduce the experiment setup. Be-
sides, we discuss the comparison results as well as the abla-
tion study.
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Table 1. Summary of RWTH-PHOENIX-Weather dataset
Train Test Dev

#Sentences 5672 629 540
#Vocabulary 1231 497 461

#Words 65227 6530 5564

4.1. Experiment Setup

Dataset. We conduct our experiments on the German sign
language dataset, i.e., RWTH-PHOENIX-Weather [26]. The
dataset contains 7K weather forecast sentences from 9 sign-
ers. All videos are of 25 frames per second (FPS) and at res-
olution of 210 × 260. Following [26], 5,672 instances are
used for training, 540 for validation, and 629 for testing. The
statistic details of this dataset are available in Table 1.
Evaluation Metrics. Predicted sentence may suffer from er-
rors including word substitution, insertion and deletion error.
Following [18, 27, 28, 29], we measure the performance with
word error rate (WER),

WER =
S + I +D

N
× 100%, (8)

where S, I and D denote the minimum number of substitu-
tion, insertion and deletion operations needed to transform a
hypothesized sentence to the ground truth. N is the number
of words in ground truth.
Implementation Details. In our experiments, videos are
divided into 8-frame clips with 50% overlap, with frames
cropped and resized to 224 × 224. The output of our 3D-
ResNet is a 512-dimensional vector, which represents the
clip in sign video. We employ the Adam [30] optimization
algorithm for the neural network training. In the Transformer,
we apply dropout [31] to the output of each sub-layer, before
it is added to the sub-layer input and normalized. Moreover,
we apply dropout to the sums of the embeddings and the po-
sitional encodings in both the encoder and the decoder stacks.
The dropout rate is set to 0.3. In addition, we employ label
smoothing [32] with value εls = 0.2. This hurts perplexi-
ty, as the model learns to be more unsure, but improves the
performance apparently.

4.2. Comparison with the State-of-the-art

In the subsection, we evaluate the performance of our method
by comparing it to some existing algorithms on the RWTH-
PHOENIX-Weather dataset. The results are summarized in
Table 2. In this table, “ins” and “del” mean the average oper-
ations of “insertion” and “deletion” that transform the gener-
ated sentences into the sentences of ground-truth.

Compared with other methods, our SL-based model
achieves a competitive performance with a lower value of
“ins” and “del”, which means that the “sub” (“substitution”)
is higher. This is due to the fact that the encoder component of
the Transformer has the capacity to distinguish sign language
signal from a sequence of video clip features exactly since

Table 2. Performance of the proposed method and some existing
algorithms on RWTH-PHOENIX-Weather. “SL” represents that the
model is trained by supervised learning. “RL” represents that we
fine-tune the model by reinforcement learning

Methods Dev(%) Test(%)
del / ins WER del / ins WER

Deep Hand [33] 16.3 / 4.6 47.1 15.2 / 4.6 45.1
SubUNet [19] 14.6 / 4.0 40.8 14.3 / 4.0 40.7
Deep Sign [34] 12.6 / 5.1 38.3 11.1 / 5.7 38.8

Recurrent CNN [20] 13.7 / 7.3 39.4 12.2 / 7.5 38.7
CNN-DCN [9] 8.3 / 4.8 38.0 7.6 / 4.8 37.3
LS-HAN [18] - - - 38.3

Ours (SL) 5.7 / 6.8 39.7 5.8 / 6.8 40.0
Ours (RL) 7.3 / 5.2 38.0 7.0 / 5.7 38.3

the Transformer is based solely on attention mechanisms.
However, the translation results do not exhibit a higher lev-
el of translation. It means that the decoder component of
the Transformer does not complete the translation task per-
fectly regardless of the limitations of the Transformer or the
accuracy of the features of video clips.

As revealed from the results, our RL-based method
achieves comparable performance. It’s worth mentioning that
our model achieves the best performance on the metrics of
“del” and “ins”. The attention mechanism of the Transformer
is of great benefit to distinguish effective sign language signal
from a sequence of video clip features.

4.3. Ablation Study

In this subsection, we analyze the experimental results of our
proposed methods based on supervised learning (SL) and re-
inforcement learning (RL), respectively, to verify the effec-
tiveness of RL.

To solve the exposure bias and the deviation between the
optimization objective and the non-differentiable evaluation
metrics using SL, we fine-tune our model through RL. As
shown in Table 2, the performance of WER decreases by ap-
proximately 1.7% on both the Dev and the Test set. Besides,
the RL-based model achieves a lower “ins” but a higher “del”.
The “sub” decreases from 27.2% to 25.6% on Dev set and
from 27.4% to 25.6% on Test set in the experiment, respec-
tively. It means that our RL-based model can capture the sign
language signal more accurately.

5. CONCLUSION

In this paper, we propose a deep learning framework com-
posed of 3D-ResNet and the Transformer for continuous sign
language recognition (CSLR). Besides, a policy-gradient re-
inforcement learning (RL) method, which is equipped with a
baseline to reduce variance, is utilized to train our end-to-end
system directly on the non-differentiable metrics, i.e., word
error rate (WER), and leads to performance gain on RWTH-
PHOENIX-Weather dataset.
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