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ABSTRACT

Sign Language Recognition (SLR) aims at translating the sign
language into text or speech, so as to realize the communica-
tion between deaf-mute people and ordinary people. This pa-
per proposes a framework based on the Hidden Markov Mod-
els (HMMs) benefited from the utilization of the trajectories
and hand-shape features of the original sign videos, respec-
tively. First, we propose a new trajectory feature (enhanced
shape context), which can capture the spatio-temporal infor-
mation well. Second, we fetch the hand regions by Kinect
mapping functions and describe each frame by HOG (pre-
processed by PCA). Moreover, in order to optimize predic-
tions, rather than fixing the number of hidden states for each
sign model, we independently determine it through the vari-
ation of the hand shapes. As for recognition, we propose
a combination method to fuse the probabilities of trajecto-
ry and hand shape. At last, we evaluate our approach with
our self-building Kinect-based dataset and the experiments
demonstrate the effectiveness of our approach.

Index Terms— Sign language recognition, enhanced
shape context, Hidden Markov Models, adaptive hidden states

1. INTRODUCTION

Sign language is the main communication method for the
deaf-mute. Sign language is composed by trajectory of the
hands, the shape of the hands, the posture of the skeletons,
even the face expressions, and so on. Normal people can-
not understand most of the signs without learning profession-
al knowledge, which poses an obstacle to the communication
between the deaf-mute and normal people. Therefore it is
necessary to build a framework that can translate the sign lan-
guage to text or speech language automatically.

Sign language recognition (SLR) is not as popularly stud-
ied as speech language recognition which is partially due to
the fact that it pays much more efforts to collect related video
data and it is hard to describe the handshapes, postures, and
gestures, while tracking the hands and depicting the trajec-
tories are also nontrivial. Early researchers achieve high ac-
curacy rate by using data gloves [1]. The main advantage of
the data gloves is that they can capture the finger joints infor-
mation and hand trajectory accurately. With the accurate fea-

Fig. 1. Three sign words with similar trajectories following
the red dash. (a) ‘mother’ using the forefinger. (b) ‘father’
using the thumb. (c) ‘thin’ closing the fingers like ‘C’.

tures, [1] obtains the accuracy of about 90% in a large vocab-
ulary sign language dataset by using Hidden Markov Model
method. But the expense and complexity of the equipment
limit its popularity. Consequently, more and more researcher-
s [2] [3] [4] focus on vision based SLR.

One cheap and helpful method is to use the color
gloves. [5] uses color gloves to make segmentation and hand
tracking easily in American Sign Language recognition. But
both data gloves and color gloves are wearable equipment and
it may make signers feel uncomfortable. Thanks to Microsoft
Kinect, signers can feel free from the wearable equipment. It
contributes to SLR vastly with its real time provision of RGB
and depth data [6]. Several other researchers focus on skele-
ton feature and hand posture feature to realize more robust
SLR [7] or gesture recognition [8]. In [7], a latent support
vector machine method is proposed and it can obtain an ac-
curacy rate of about 85.5% with 73 classes of the American
Sign Language isolated signs. In [8], a new feature Histogram
of Oriented Displacement is proposed and it performs well in
gesture recognition. Although the skeleton-based features are
robust in some cases, they cannot classify the signs when they
share the same trajectory as shown in Fig. 1. To tackle the
problem, researchers try more features like HOG [9] to repre-
sent the hand shape and it helps to improve the performance
in SLR [2] [10].

We can easily find the action recognition dataset based on
Kinect, but for sign language recognition, as far as we know,
there is still lacking of a public, standard and large Kinect-
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Fig. 2. Our SLR framework. (a) The proposed enhanced shape context feature (introduced in Section 3 in detail). (b) Fetching
the hand surroundings by Kinect mapping function and reducing the dimension by PCA. (c) Clustering the HOG features by
k-means and using the adaptive hidden states method in Section 3 to train the HMM models. (d) Indexing the features by using
the centers obtained in (c). (e) Combining the probabilities using the method in Section 3 and finally, realizing the recognition.

based dataset. Some researchers only perform experiments
on small vocabulary datasets. For example, [7] conducts ex-
periments on 73 signs dataset. On 40 German sign dataset,
Cooper et al. [11] use Hidden Markov Models (HMM) with
sub-units to achieve an accuracy of 85.1%. Some researchers
also study on large vocabulary datasets. For example, Chai et
al. use trajectory matching method to realize an accuracy rate
of 83.5% on 235 Chinese sign dataset, and they also conducts
experiments on 370 Chinese sign dataset with the accuracy of
about 90% by using Light-HMM [2]. Eng-Jon Ong et al. [12]
reach an accuracy rate of 74.1% by using sequential pattern
trees on 982 signs in the signer dependent test.

Witnessing the great improvement Hidden Markov Mod-
els has made in speech recognition, a lot of researchers use the
models to model sign language words [13] [14] [15]. Consid-
ering the powerful modeling ability, we also focus on HMM
method. Unlike other researchers, we propose a method to
adaptively determine the hidden states of the HMM instead of
fixing them as a specific value. As for features, we propose a
new feature called enhanced shape context (eSC) to represent
the spatial and temporal information of the trajectories. In ad-
dition, we use HOG feature to describe the hands in video and
PCA to reduce the dimension. In recognition stage, we com-
bine the output probabilities with trajectory and hand shape
features as the final recognition probability. The framework
is shown in Fig. 2.

Our main contributions of this work are summarized as
follows.

• We propose a new feature eSC, which consists of one
dollar gesture recognizer and shape context. The fea-
ture describes the shape of the trajectories well.

• Considering the characteristic of the sign language and
benefited from the variation of the hand shape, we pro-
pose an HMM with adaptive hidden states to model the
sign words instead of fixing the states.

• We propose a combination method to combine the
probabilities of the trajectories and hand shapes, and
our method performs better than baselines in our large
Kinec-based dataset.

The remainder of this paper is organized as follows. Section
2 describes our framework. Section 3 introduces our features,
the determination of the hidden states and the combination of
the probabilities. Section 4 is the detailed experiments. And
then we present our conclusion and future work.

2. FRAMEWORK

Fig. 2 shows both the training and testing procedures. We
record the original RGB video data and skeletons information
with Kinect 2.0. Fig. 2 (a) denotes the enhanced shape con-
text (eSC) feature extraction, which is described in Section 3.
Then we cluster the features with K-means to obtain adaptive
hidden states in Section 3 for training the HMM models. For
hand shape modeling, we extract the HOG feature and reduce
the dimension by PCA, and then train the HMM models with
adaptive hidden states. In the testing stage, we extract the eS-
C feature and HOG feature separately, and index them with
the centers obtained in Fig. 2 (c). Then we utilize the com-
bination method in Section 3 to obtain the final recognition
result.



3. METHODS

This section contains feature description and our adaptive
models.The Kinect sensor provides us 3-D coordinates of 25
skeletons including hands, elbows, head, shoulders, and so
on. Besides, it also furnishes 720p RGB videos. With the
original data, we propose an enhanced shape context (eSC)
feature for trajectory and utilize HOG feature for hand shape
representation.

3.1. Enhanced shape context

After obtaining the 3-D skeleton coordinates, we normalize
them by the head points and shoulder width of the signer.
To further explore the trajectory information, we divide the
(x, y, z) coordination into (x, y), (x, z), and (y, z), and then
concatenate the three coordination features. As shown in
Fig. 3, our eSC feature is extracted in three steps. First, in or-
der to avoid the influence caused by different speeds in SLR,
we sample the points, which is benefited from the one dol-
lar recognizer [16]. Then, we extract shape context on each
coordination.

3.1.1. Step 1: one dollar sampling

In SLR, even the same person may sign the same word differ-
ently with variant speeds. To address the problem, we utilize
the one dollar sampling method [16]. The method can sample
the path in terms of the point density. To re-sample the tra-
jectory points, we first calculate the total length of the path,
which has M points. Dividing this length by N−1 gives the
length of each increment, I, between N new points. Then the
path is stepped through such that when the covered distance
exceeds I, a new point is added through linear interpolation.
Here, N is the length when conduct one dollar sampling (we
set N no larger than 250 in our experiments).

3.1.2. Step 2: shape context

Shape context [17] can describe the distribution of other
points when given a reference point [18]. For a point p, shape
context is defined as a histogram by voting the remaining
N−1 points to the surrounding bins of p, where N is the num-
ber of the trajectory points. Using the points obtained in step
1, we extract shape context feature in 3 coordinations respec-
tively. In each coordination, we separate the space into 36
bins as shown in Fig. 3 (b), where the plane is divided by 3
circles and 6 lines. Hence, we get a 216-D vector (12 direc-
tions x 3 circles x 3 coordinations x 2 hands) for each point.

3.2. HOG of hand shape

HOG feature is one of the most popular image description
features. We adopt it to describe the hand shape, which is ob-
tained from the original RGB video with the Kinect mapping
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Fig. 3. Steps for eSC. (a) One dollar sampling to tackle the
difference caused by different speeds. (b) Shape context ex-
traction with 36 bins in the plane.

function. We fetch the hand center surroundings with the pic-
ture within a patch of 70x70 pixels experimentally. We cal-
culate HOG in each 10x10 pixel cell and each block with 2x2
cells. Finally, we obtain a 1296-D HOG feature (6 blocks x 6
blocks x 4 cells x 9 orientations) for each frame. Considering
the difficulty of the high dimension processing, we use PCA
to reduce the dimension to 50 experimentally. Consequently,
each frame is described by a 100-D feature (two hands).

3.3. HMMs with adaptive hidden states

HMMs focus on three basis questions, i.e., evaluation, es-
timation, and decoding problem. The evaluation problem
is formulated as: given the observation sequence O =
O1, O2, ..., OT , and the model λ = (π,A,B) to calculate
P (O|λ), where A is the states transfer probabilities matrix
and B is the observation occurred probabilities matrix when
given the states. The second problem refers to the estima-
tion of the model given one or more observations. The de-
coding problem is: given observations to find the most likely
sequence of hidden states.

Rather than using the fixed hidden states, we propose to
adaptively determine the number of the hidden states. As
shown in Fig. 4, the hand shapes vary from beginning to the
end of the video. We obtain the HOG feature per frame as de-
scribed in Section 3.2. And from the second frame, we calcu-
late the Euclidean distance between the current frame and the
former to get a new vector. We observe from the vector that
some values are larger than most of others. And inspired by
the fact that sign words are composed of some hand shapes,
we set the threshold to segment the videos by the variation of
the hand shape. This implies that a hidden state may corre-
spond to a series of frames with similar hand shape. In Fig. 4,
we set the hand segment threshold as 0.88 experimentally. If
we define the corresponding image which is smaller than the
threshold as label ‘1’, and the exceeding as label ‘0’. The se-
quence is depicted to be the form like “11100011110000...”.
In the implementation, the segment number of successive ‘1’
after media filter pre-processing is the hidden states of the
sign. And the final hidden states for a specific sign word is
the mode of the segments on training samples.



Fig. 4. An example for adapting hidden states in sign ‘situation’. Each number under the hand image denotes the difference
with the former frame. For example, ‘f047 0.194’ implies the difference between 47th frame and 46th frame is 0.194, which is
smaller than threshold 0.88 we set experimentally. All the difference values in the blue boxes are larger than 0.88, while others
are smaller. The 3 blue solid boxes divide the sequence into 4 segments, which implies that we can determine the hidden state
as 4 when modeling the sign ‘situation’.

3.4. Combination method

Our eSC feature contains one dollar sampling, which makes it
impossible to fuse the trajectory and hand shape feature frame
by frame, and the length of trajectory does not equal to that
of the original videos. To tackle this problem, we fuse the
probabilities of the two kinds of models as in Fig. 2 (e). Since
the probability of the HMM decreases when the observation
becomes longer, it is unreasonable to add the probabilities di-
rectly. To address this problem, we utilize the average proba-
bility per point by pre-processing the probability as:

Vi =
l
√
P i, i = 1, 2, ..., n (1)

where l is the length of the trajectory, n is the number of sign
words, Pi is the recognition probability under the ith model,
and Vi is the average probability for trajectory under the ith
model. In the same way, we can obtain the average proba-
bility per frame for hand shape with HOG features. At last,
we add the two average probabilities as the final recognition
probability and find the maximum. The corresponding model
will be recognized as the result.

4. EXPERIMENTS

We build two Kinect-based Chinese sign language datasets,
as shown in Table 1, by employing deaf-mute school teach-
ers as the signers and conduct experiments on them by leave-
one-out validation. First, we determine the optimal observa-
tion number in HMMs. Second, we evaluate the effectiveness
of different features. Third, we compare the results between
the adaptive hidden states and fixed states. At last, we com-
pare our method with the classical methods including Dynam-

ic Time Warping (DTW), traditional HMMs, and other work
on the datasets.

4.1. Datasets

The Kinect-based dataset is collected by professional sign
language signers. We record the data at the rate of 30fps
(30 frames per second). The distance between the signers and
the Kinect is about 1.5 meters. We build two datasets. The
Dataset I contains 100 sign words by one signer with 5 repeti-
tions and 500 videos in total. To show the recognition perfor-
mance on large vocabulary dataset, we build dataset II, which
contains 500 sign words by one signer with 5 repetitions and
2500 videos in total.

4.2. Evaluation on observation numbers

Unlike hidden states which can be variant in different models,
observation number should be consistent. In this part, we e-
valuate the different observation in eSC feature and HOG fea-
ture with fixed hidden states HMMs, respectively. As shown
in Fig. 5, the blue polyline describes the accuracy rate of eSC
feature, and the orange polyline for the HOG feature. We can
find that when the observation number is set to 1900 and 1800
for eSC and HOG, respectively, the performances are 0.750
and 0.694, which are better than other observation numbers.

4.3. Evaluation on different features

Sign language can be represented by different features with
different discriminative abilities. For example, trajectory fea-
ture can describe the dynamic gesture words and the hand
shape can describe the static pose. Furthermore, some words
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Fig. 5. Evaluation on observation numbers. The orange poly-
line above describes the accuracy rate of the eSC feature and
the blue polyline below describes the accuracy rate of HOG
feature.

Table 1. Results of features on Dataset II
Methods Features Top1 Top5 Top10

SC 0.628 0.848 0.902
HMMs with eSC 0.702 0.880 0.940
fixed states HOG 0.694 0.886 0.930

SC+HOG 0.706 0.844 0.970
eSC+HOG 0.838 0.960 0.976

can only be determined by taking into account both trajectory
and hand shape. This section shows the experimental result-
s by evaluating different features for feature selection. We
compare the results by using five kinds of features, including
normal skeletons coordinates (SC), enhanced shape context
(eSC), HOG, SC+HOG and eSC+HOG. The evaluation meth-
ods here all use conventional HMM with fixed hidden states
6.

Table 1 shows the recognition results with the five differ-
ent features. The SC feature contains four skeletons coordi-
nates. The eSC feature is our enhanced shape context feature
introduced in Section 3. Topn means the result is accurate
in topn. We can see from the table that our eSC feature is
superior to the normal SC feature with about 8% improve-
ment. Both SC and eSC are dynamic features. As for appear-
ance feature, we calculate HOG feature of the hands and then
use PCA to reduce the dimension to 100 per frame (50 each
hand). The feature combined by SC and HOG gets higher
performance than the former three features, and the feature
eSC+HOG performs better than any other features. The com-
parison demonstrates that our feature has more competitive-
ness.

Table 2. Results of states with HOG on Dataset II
States Top1 Top5 Top10 Time(s)

3 0.664 0.872 0.930 0.167
4 0.678 0.882 0.926 0.211
5 0.676 0.876 0.928 0.261
6 0.694 0.886 0.930 0.301

Adaptive states 0.708 0.888 0.930 0.256

Table 3. Results of methods on Dataset I & II

Dataset method Top1 Top5 Top10
Dataset I DTW 0.710 0.800 0.850
100 signs Lin et al. [19] 0.840 0.950 0.970

HMMs (SC+HOG) 0.760 0.940 0.960
HMMs (eSC+HOG) 0.880 0.970 0.990
Ours (eSC+HOG) 0.920 0.990 1

Dataset II DTW 0.666 0.784 0.832
500 signs Lin et al. [19] 0.698 0.904 0.948

HMMs (SC+HOG) 0.706 0.844 0.970
HMMs (eSC+HOG) 0.838 0.960 0.976
Ours (eSC+HOG) 0.860 0.968 0.988

4.4. Experiments on variant hidden states & fixed states

Hidden state is important for HMMs, and in SLR, we regard
the states as the sub-units of the sign words.Unfortunately,
there is no exact sub-unit number and we cannot define or
pick out them one by one. For different words, the number of
sub-units are likely to be different, and it is unreasonable to fix
the same hidden state for all words. All the above inspire us
to find a method to automatically determine the hidden states.
As show in Section 3, we adapt the states through the change
of the hand shape.Table 2 shows the results with fixed and
adaptive states. We find that the result of adaptive states is
superior to any other fixed states in top1. And the time cost is
a trade off among them.

4.5. Experiments on methods

In this part, we compare our proposed method with classical
method DTW, HMM, and method in [19] on dataset I and
dataset II, respectively. The comparison recognition rates are
shown in Table 3.

From the comparison on dataset I in Table 3, we can see
that our method can get the accuracy rate of 0.920 in top 1,
0.990 in top 5, and perfect 1 in top 10. In dataset II our re-
sults are 0.860 in top 1, 0.968 in top 5, and 0.988 in top 10.
In both datasets our results are superior to the others. The
performance rate decreases compared with dataset I because
while the vocabulary becomes larger, words behave similarly
and it increase the difficulty to recognize them accurately.



5. CONCLUSIONS AND FUTURE WORKS

In this paper we propose a sign language recognition frame-
work based on Kinect. The framework contains feature ex-
traction, modeling, and recognition. In feature extraction
stage, we propose an enhanced shape context feature, which
captures the spatial and temporal information well. As for
appearance feature, HOG feature with PCA is used. In mod-
eling stage, rather than using fixed hidden states in HMMs,
we proposed an method to obtain the adaptive states inspired
by the variation of the hand shapes. We conduct a series of ex-
periments to prove that our eSC feature is better than SC, and
our adaptive-hidden-states method is better than the baseline
methods. In our future work, we will conduct experiments on
larger datasets and explore the deep fusion among skeleton
feature, RGB video, data and depth map data to improve the
performance.
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