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Abstract

This paper presents a novel deep neural architecture
with iterative optimization strategy for real-world
continuous sign language recognition. Generally, a
continuous sign language recognition system con-
sists of visual input encoder for feature extraction
and a sequence learning model to learn the corre-
spondence between the input sequence and the out-
put sentence-level labels. We use a 3D residual
convolutional network (3D-ResNet) to extract vi-
sual features. After that, a stacked dilated convolu-
tional network with Connectionist Temporal Clas-
sification (CTC) is applied for learning the map-
ping between the sequential features and the text
sentence. The deep network is hard to train since
the CTC loss has limited contribution to early CNN
parameters. To alleviate this problem, we design
an iterative optimization strategy to train our archi-
tecture. We generate pseudo-labels for video clips
from sequence learning model with CTC, and fine-
tune the 3D-ResNet with the supervision of pseudo-
labels for a better feature representation. We al-
ternately optimize feature extractor and sequence
learning model with iterative steps. Experimental
results on RWTH-PHOENIX-Weather, a large real-
world continuous sign language recognition bench-
mark, demonstrate the advantages and effective-
ness of our proposed method.

1 Introduction

Sign language is one of the most efficient and widely used
communication ways for the deaf-mute. It conveys sematic
meaning through gestures, hand motions, even facial expres-
sions, and so on. This makes the sign language a perfect
test bed for computer vision, natural language processing,
and human-computer interaction. The target of sign lan-
guage recognition (SLR) is to automatically translate the sign
videos into text or interpret it into spoken language. With
broad social impact, it has attracted considerable attention.
[Koller et al., 2015; Camgoz et al., 2017; Pu et al., 2016;
Cui et al., 2017; Guo et al., 2018]

Sign language recognition tasks are usually divided into
two categories, i.e., isolated SLR and continuous SLR. The
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main difference between these two tasks is the supervision
information. The former is a kind of action classification,
while the later not only recognizes the whole sign words but
in correct order as well. Hence, continuous sign language
recognition is much more complicated than isolate sign lan-
guage recognition in general. The main idea of continuous
sign language recognition is to learn the corresponding rela-
tionships between the input visual frames and the supervision
of sentence-level sequential labels.

Continuous sign language recognition (CSLR) is somehow
a kind of weakly supervised sequence learning task. Gen-
erally speaking, the performance of continuous SLR system
usually depends on two aspects. On one hand, since the sys-
tem takes visual sequences such as videos and images as in-
puts, it is significant to extract descriptive and discriminative
representation of the visual inputs. Hence, the feature extrac-
tor with more representative capacity could result in a bet-
ter performance. On the other hand, as a weekly supervised
sequence learning task, it requires an accurate alignment be-
tween the input sequences and the sentence-level labels.

Recently, deep learning methods achieve breakthroughs
in computer vision. Deep neural features outperform hand-
crafted features in most of computer vision tasks. Recent
successes of Residual Networks (ResNet) [He et al., 2016] in
various image classification tasks prove that ResNet do have
better representation capacities for images than other deep ar-
chitectures. Meanwhile, 3D convolutional neural networks
also demonstrate good performances in action recognition [Ji
et al., 2013; Tran et al., 2015; Qiu et al., 2017]. Inspired
by the superiorities of Residual Networks and 3D neural net-
works, we use a combined 3D residual convolutional neu-
ral network for feature extraction in our continuous sign lan-
guage recognition model.

In addition, many sequence learning methods achieve
state-of-the-art performances in machine translation, speech
recognition, and video caption [Song et al., 2017; Li et al.,
2017]. As one of the representative sequence learning model,
Long Short-Term Memory (LSTM) shows powerful capabil-
ity to deal with sequential modelling tasks. However, there
still remains some weakness. For instance, it’s difficult to
deal with long-range temporal dependencies, and it converges
with a low speed in training. Oord et al. propose a dilated
causal convolution-based architecture called WaveNet [Oord
et al., 2016a] for audio generation. It overcomes the prob-
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Figure 1: Iterative training illustration. 3D-CNN transpose the in-
put clips into the fixed-length features for stacked dilated convolu-
tions with CTC. The sequence learning model generates clip-level
pseudo-labels to fine-tune the 3D-CNN in next iteration.

lem of long-range temporal dependencies and performs better
than LSTM. Considering the similarity between SLR and au-
dio generation task, dilated convolutional network has great
potential for continuous sign language recognition. In this
work, we use dilated convolutions with Connectionist Tem-
poral Classification (CTC) loss to model the dependencies
between different sign words. The CTC approach is origi-
nally proposed in [Graves et al., 2006] for end-to-end speech
recognition, and it has achieved significant improvement in
speech recognition tasks.

In this paper, we propose a novel architecture for contin-
uous sign language recognition and achieve state-of-the-art
performance. It’s worthwhile to highlight our main contribu-
tions as follows:

e We develop our architecture based on 3D residual net-
work and dilated convolutions, which is a fresh frame-
work for continuous sign language recognition task. To
the best of our knowledge, we are the first to deploy di-
lated convolutions for sequence learning in continuous
SLR system.

e We propose an iterative optimization strategy with Con-
nectionist Temporal Classification (CTC) for our sign
language recognition system (shown in Figure 1).

Experiments on RWTH-PHOENIX-Weather, a large
real-world continuous SLR benchmark, demonstrate the
effectiveness and superiority of our method.

The rest of this paper is organized as follows: we first dis-
cuss some related works in Section 2. After that, Section
3 describes our proposed continuous sign language recogni-
tion framework and iterative optimization strategy in details.
In Section 4, we conduct a series of experiments on a large
benchmark to demonstrate the advantages of the proposed ap-
proach, and analyze how the iterative optimization strategy
makes the performance better step by step. Finally, we make
concluding remarks in Section 5.

2 Related Work

This section reviews the existing sign language recognition
methods with different features and architectures. We also
discuss some other sequence learning tasks related to the
techniques used in our proposed approach.

886

We briefly group the methods for sign language or gesture
recognition into two categories: hand-crafted feature based
and deep learning based methods. Early works [Starner et
al., 1998; Wang er al., 2006; Koller et al., 2015] mostly use
hand-crafted features with sequence modelling architectures
like Hidden Markov Models (HMM) or Hidden Conditional
Random Fields (HCRF). One typical work [Starner et al.,
1998] presents a real-time Hidden Markov Model-based sys-
tem for recognizing sentence-level continuous American Sign
Language (ASL) using a single camera to track the users’
unadorned hands. Although experiments on a 40-word lex-
icon dataset show the efficiency of HMMs for sign language
recognition, challenges still remain such as it’s difficult to
accommodate long-range dependencies among observations.
To address this problem, Wang et al. [Wang et al., 2006]
derive a discriminative sequence model with Hidden Condi-
tional Random Field (HCRF) for gesture recognition. The
proposed model extends previous models for spatial CRFs
into the temporal domain.

Previous works for continuous SLR generally conduct ex-
periments on small datasets with a small vocabulary due to
the lack of sign data. To alleviate the problem, Koller et
al. [Koller et al., 2015] release a large vocabulary real-
life continuous sign language recognition dataset (RWTH-
PHOENIX-Weather) which contains more than 1000 sign
words. Recently, benefitting from the development of deep
learning, sign language recognition has made great progress.
The large datasets such as RWTH-PHOENIX-Weather make
it possible to train deep neural networks for sign language
recognition. The architecture for continuous sign language
recognition usually consists of a visual input encoder for fea-
ture extraction, and a sequence learning model for mining
the correspondence between the input sequence and sentence-
level labels. There are several kinds of feature extraction en-
coders for sign language or gesture recognition, such as con-
volutional neural networks (CNNs) [Koller et al., 2016al, 3D-
CNNs [Huang et al., 2015; 2018], and temporal convolutions
[Pigou et al., 2015].

There are many techniques for sequence learning. The
most popular one is Recurrent Neural Network (RNN), in-
cluding Long Short-Term Memory (LSTM) [Hochreiter and
Schmidhuber, 1997] and Gated Recurrent Unit (GRU) [Cho
et al., 2014]. LSTM has been successfully used for many ap-
plications such as video captioning and question-answering
[Kim et al., 2017; Song et al., 2017; Zhao et al., 2017]. Even
though LSTM demonstrates powerful capacity for sequence
modelling, there still exist some nontrivial issues. While im-
plementing the Back-Propagation Through Time (BPTT) of
LSTM, the calculations of current state rely on the results of
previous states, which makes it impossible to calculate in par-
allel and the algorithm converges slowly. Oord ef al. propose
a faster and more efficient architecture WaveNet [Oord et al.,
2016a] for sequence learning. WaveNet combines causal fil-
ters with dilated convolutions to allow their receptive fields
to grow exponentially with depth, which is significant to cap-
ture the long-range temporal dependencies in sequential data.
Another work using convolutions to replace LSTMs for se-
quence modelling is proposed in [Gehring et al., 2017]. The
sequence-to-sequence architecture in this paper is based en-
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Figure 2: Overview of our sign language recognition framework. The system consists of a 3D residual network and a dilated convolutional

network, followed by a CTC loss layer.

tirely on convolutional networks. Hence, the computations
over all elements can be fully parallelized during training and
the optimization is easier compared to the recurrent neural
networks. This convolutional sequence-to-sequence model
outperforms LSTMs for machine translation.

Recent works such as [Cui ef al., 2017; Camgoz et al.,
2017] employ a CNN-LSTM network with Connectionist
Temporal Classification (CTC) [Graves et al., 2006] for con-
tinuous sign language recognition. CTC approach has the ca-
pacity to train RNNss to label unsegmented sequences directly.
Hence, it’s appropriate to deal with continuous sign language
translation due to the lack of supervision on accurate temporal
segmentation for sign words. Cui et al. use a staged optimiza-
tion strategy to train an end-to-end sequence learning scheme
with the objective function of connectionist temporal classi-
fication [Cui et al., 2017]. They apply the proposed method
to a real-word continuous sign language recognition bench-
mark and it achieves the state-of-the-art performance. There
are some other SLR approaches which combine the deep neu-
ral architecture and traditional sequential model [Koller ez al.,
2016b; 2017]. Koller et al. embed an HMM into a deep re-
current CNN-BLSTM network [Koller et al., 2017] with an
iterative re-alignment approach for continuous sign language
recognition. The hybrid CNN-HMM method iteratively treats
the CNN outputs as Bayesian posteriors for HMM training
and makes use of the hidden states of each frame predicted
by HMM for CNN finetuning.

3 Our Method

In this section we propose a novel deep learning architecture
for continuous sign language recognition (CSLR) with itera-
tive optimization. The continuous sign language recognition
system usually takes the video or image sequences as input,
and automatically translates the visual sequences into natu-
ral language for easy understanding. Our CSLR architecture
consists of two parts:

1. Visual Encoder for Feature Extraction: A residual 3D
convolutional neural network (3D-ResNet) for video
clip representation.

2. Sequence Learning Model: A dilated convolutional neu-
ral network with Connectionist Temporal Classification
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for sequence alignment and decoding.

We use Connectionist Temporal Classification (CTC) ap-
proach to train the Sequence Learning Network with
sentence-level labels. After the convergence of the network
learning, we get the alignment proposals between the video
clips and sentence labels. With pseudo-labelled video clips,
we fine-tune the visual feature extractor to get better repre-
sentations of the visual inputs. Then we iteratively train and
fine-tune these two networks. Figure 1 illustrates the itera-
tive optimization strategy for our continuous sign language
recognition system.

3.1 Network Architecture

The architecture of our proposed method is shown in Fig-
ure 2. Feeding in video clip sequence, our system consists
of a 3D residual network for feature extraction, followed by a
dilated convolutional neural network and a connectionist tem-
poral classification layer for sequence learning and labelling.

3D Residual Network (3D-ResNet)
The 3D convolutional neural network has shown strong ca-
pability for video representation and achieves state-of-the-art
results in action recognition [Ji e al., 2013; Tran et al., 2015].
3D convolutions not only model the spatial information,
but consider the sequential relationship by temporal connec-
tions across frames. Considering the huge successes of Resid-
ual Networks in different image recognition tasks, we use 3D-
ResNet, which only replace the 2D convolutional filters with
3D convolutional filters, to generate video representation.
Let X = (21, ...,z7) = {7 }]_, denote an input sequence
of images with 7" frames, a sliding window is performed on
X to generate a video sequence V¥ (v1,...,on5) of N
clips. We use ®o () to represent 3D-ResNet, where O are the
network weights. Passing each video clip v; through the 3D-
ResNet to produce a fixed-length vector representation f; €
R?, the input sequence is represented as

FN: (fla"'7fN) :{@G(Ut)}iil- (1

In our experiments, we use the 18-layer 3D ResNet consid-
ering the low memory consumption and less computational
cost. The architecture and convolutional filter size of 3D
ResNet is shown in Figure 3. The activation of pooling layer
with a dimension of 512 is extracted as feature representation.
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Figure 3: A 18-layer 3D residual convolutional network with two
different skip connections.

Dilated Convolutions

Dilated convolutions have made huge success for audio gen-
eration in WaveNet [Oord er al., 2016a]. When applying the
key idea of WaveNet to continuous sign language recognition,
it yields state-of-the-art performance. The filter of the dilated
convolution is applied over an area larger than its length by
skipping input values with a certain step.

Dilated convolutions with different dilations have different
receptive fields. Stacked dilated convolutions enable network
to have very large receptive fields with just a small number of
layers, since the dilation range increases exponentially. This
makes the network capture the temporal dependency with var-
ious resolutions for the input sequences. For each dilated con-
volutional layer, we employ the same gated activation unit
as mentioned in gated PixelCNN [Oord et al., 2016b] and
WaveNet [Oord er al., 2016al. The outputs o; and h; of the
i*" dilated convolutional cell for the t*" clip are

z = t(mh(Cd(thl))) ® o(Cd(hf*l))L ()
ogz) = tanh(C1.1(2)), 3
= h{™ + ol )

where C4 and Cq,; stand for dilated convolution and 1 x 1
convolution, respectively. Denoting the stacked dilated con-
volutional cells as “BLOCK?”, the outputs of the dilated con-

volutional network are the sums of ogi) for all dilated cells

and blocks, written as
> >a
all—blocks 1

After all dilated BLOCKSs, a 1x1 convolutional layer with the
activation of tanh is applied. At the end, we use a fully-

®
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connected layer to embed the outputs into non-normalized
categorical probabilities of word-level labels with K classes:

Yr = Wye x tanh(Crx1 (o)) + bye. (6)

The final probability distribution of a sequence with IV clips
can be written as

Y = (xj) = [y17y25 "'ayN]T7 (7)

where Y} is the log-probability of label j at ith clip.

3.2 Connectionist Temporal Classification (CTC)

Connectionist Temporal Classification (CTC) [Graves et al.,
2006] introduces a “blank” label (—), which means the in-
put clip does not belong to any category in the vocabulary.
Denote the intermediate label path of the input sequence as
m = (m1,...,mr), where 7, € V|J{—}, V is the sign word
vocabulary. Given input X, the probabilities p(7|X) of 7 is

T
) = HYZJ\'t'

t=1

p(xX) = [[P(m/X

t=

T

®)

1

Define a many-to-one map B which simply removes all
blanks and repeated labels from the paths (e.g. B(—bb—eel —
I—) = B(b— el — 1) = bell). Thus, given the sentence-level
sequence label s = (s1, ..., s ), where L is the the number of
symbols in the sequence, the conditional probabilities of s is
calculated by summing up the probabilities of all correspond-

ing paths:
> p(lX),
TeB~1(s)

p(s|X) = ©)

where B~1(s) = {n|B(n) = s} is the inverse mapping func-
tion of B.

The CTC loss is defined with the negative log-likelihood
of the ground truth as

['CTC = —1np(s|X). (10)

To efficiently compute the probability p(s|X), the forward-
backward algorithm is applied. More details about forward-
backward algorithm and the optimization procedure are intro-
duced in [Graves et al., 2006].

In order to obtain a better representation of 3D convolu-
tional network of input clips, we fine-tune the 3D-ResNet
with the labels generated from the dilated convolutional net-
work and CTC layer after convergence. The label ¢; of the
it" clip is generated by

l; = argmax Y. (11
J

Such labels are called as pseudo-labels, since they are au-
tomatically generated by the model. When training the net-
work, the CTC loss has limited contribution to CNN parame-
ters due to the chain rules for back-propagation. Fine-tuning
the ResNet with pseudo-labels will alleviate this issue, and
obtain better representations of input clips.

4 Experiments

In this section we provide some experimental illustrations and
extensive evaluations of our method on continuous sign lan-
guage recognition dataset.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Train Test Dev
#Sentences 5672 629 540
#Vocabulary 1231 497 461
#Words 65227 6530 5564

Table 1: Summary of RWTH-PHOENIX-Weather-2014 dataset.

4.1 Dataset and Evaluation

We conduct our experiments on RWTH-PHOENIX-Weather-
2014 [Koller et al., 2015], which is a popular benchmark
dataset for continuous SLR in German Sign Language. This
dataset provides RGB videos for full frames and cropped
hand patches. The videos are performed by 9 signers with
around 1 million frames and 6841 sentences in total. The
statistic details of this dataset are available in Table 1.

We measure our system performance with Word Error Rate
(WER), which is wildly used in speech recognition and ma-
chine translation system. The WER is some kind of perfor-
mance metric derived from the Levenshtein distance. It mea-
sures the least operations of substitutions, deletion and inser-
tion to transform the generated sequences into the reference
sequence:

__ #insertions + #deletions + #substitutions

WER
length of reference

(12)
Based on the definition of Eq. 12, a lower WER means a
better performance.

4.2 Iterative Optimization

We use iterative optimization strategy shown in Figure 1 to
train our network. The step-by-step training procedure in de-
tail is introduced in this section.

3D-ResNet Setups and Initialization

In our experiments, the input images are resized to 224 x 224.
The 3D convolutional network requires fixed-length video
clip inputs, so a sliding window is performed to generate clips
from the raw input videos. The sliding window size is set to
be 8, which is able to cover the sign word if the gloss exactly
exists in the clip. In addition, we set the stride of the sliding
window as 4, which means there are 50% overlaps between
the adjacent clips. In this way, there are 190,536 clips in train-
ing set, 21,349 clips in testing set, and 17,908 clips in dev set.
Each video includes around 34 clips in average.

As mentioned in the previous sections, the 3D-ResNet is
trained by the supervision of pseudo-labels obtained from the
sequence alignment procedure. In the initial step, we pre-
train our 3D-ResNet on an isolated SLR dataset introduced in
[Zhang er al., 20161, using stochastic gradient descent opti-
mizer (SGD) with a batch size of 5, a learning rate of 0.001, a
momentum of 0.9, and a weight decay of 5 x 107°. After the
convergence of the network with 155k iterations, the 512-D
pooling activations are extracted as the clip representations.

Sequence Learning and Pseudo-label Generation

The dilated convolutional network is trained with CTC loss.
Every block has the dilation of 1, 2, 4, 8, 16 for each layer,
and the size of block is 5. The fully-connected layer before
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Figure 4: WER on RWTH-PHOENIX-Weather-2014 Dev set.

Iterations . Dev . Test

del / ins WER del / ins WER
Iter-0 18.5/2.6 60.3 18.1/2.8 59.7
Iter-1 11.0/3.9 454 11.7/3.5 45.5
Iter-2 9.7/4.3 41.2 9.1/4.5 41.5
Iter-3 9.7/4.0 39.0 8.8/4.1 39.0
Iter-4 8.7/4.5 38.3 7.8/4.4 37.7
Iter-5 8.3/4.38 38.0 7.6/4.8 37.3

Table 2: Word error rate (WER) on RWTH-PHOENIX-Weather-
2014 for different iterations (the lower the better).

the softmax-layer has a size of 1024. We train the network
using Adam optimizer [Kingma and Ba, 2014] with a learn-
ing rate of 1 x 10~%. The batch size is 20, and the network
coverages very fast within around 10 epochs.

For inference, we pass the test clip sequence through net-
work and obtain the posterior probability distributions for
each clip. The CTC beam search decoder in TensorFlow
[Abadi et al., 2016] is used to generate new sentence cor-
responding to the input video. We can get the softmax proba-
bility distribution for each training clip, and assign the most-
likely sign word label which has the maximum probability
to generate pseudo-labels. We alternately optimize the 3D-
ResNet feature extractor and dilated convolutional network.

4.3 Results

Iterative Results

Figure 4 shows how the word error rates on RWTH-
PHOENIX-Weather-2014-Multisigner Dev set decrease with
different epochs and iterations. From the results, we find that
the system becomes convergence from the fourth epoch for
each iteration. The network is fully trained since the per-
formance curves of iteration-4 and iteration-5 getting much
closer to each other. Hence, we stop training after the fifth
iteration. The WERs on Test set and Dev set of RWTH-
PHOENIX-Weather-2014-Multisigners are shown in Table 2.
In this table, “ins” and “del” mean the average operations of
“insertion” and “deletion” that transform the generated sen-
tences into the sentences of ground-truth. The performances
are getting better (lower WERs) with more training iterations.
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Figure 5: An example for iterative optimization from iter-0 to iter-2. (a) The pseudo-labels for 3D-ResNet finetuning generated from each
iteration. Red symbols mean that these words are not in the ground truth sentence. The wrongly recognized words are corrected step by
step. (b) CTC beam search decoder results. “S” and “I” stand for the operations of “substitution” and “insertion”, respectively that turn the

recognised sentence to the reference sentence.

Dev Test
Methods del/ins WER | del/ins WER
T-MioHands | 163746 471 | 152746 451
SubUNet | 14.6/40 408 | 143/40 407
CNN-Hybrid | 12.6/5.1 383 | 11.1/5.7 388
Staged-Opt | 13.7/73 394 | 122/75 387
Ours 83/48 380 | 76/48 373

Table 3: Word error rate (WER) on RWTH-PHOENIX-Weather-
2014 (the lower the better).

Figure 5 shows an example for our iterative optimization
algorithm. The gray symbols stand for “blank” labels for
CTC training and decoding. Other symbols in colors (ex-
clude red) mean the decoded words belong to the ground
truth sentence. In addition, the words in red are not in the
the ground truth sentence which means they’re wrongly rec-
ognized. Figure 5(a) illustrates the pseudo-labels generation
from sequence learning stage The results of CTC beam search
decoder for the same example are shown in Figure 5(b). At
iteration-0, the decoded sentence is not absolutely right, with
four wrongly recognized words, resulting in a low WER of
50%. After finetuning the 3D-ResNet, we re-train our se-
quence learning network again, the WER of the sentence de-
coded in iteration-1 gets much lower. Further, we get a com-
pletely right result after the second iteration.

We conduct experiments on a single Nvidia GTX 1080Ti
GPU. Inference time depends on the video length. In aver-
age, it takes around 1 second to recognize a sign video with
140 frames (850ms for feature extraction and 150ms for CTC
beam search decoder with a beam width of 100).

Comparison with the state-of-the-art

In this part, we evaluate the performance of our method
by comparing it to some existing algorithms on RWTH-
PHOENIX-Weather-2014-Multisigner dataset. The perfor-
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mance comparisons are summarized in Table 3. 1-Mio-Hands
[Koller et al., 2015; 2016al embeds a CNN within an iterative
EM algorithm. SubUNet [Camgoz et al., 2017] and Staged-
Optimization [Cui et al., 2017] both use the BLSTM+CTC
framework, and achieve WERs of 40.8% and 39.4% on dev
set, 40.7% and 38.7% on test set, respectively. The hybrid
CNN-HMM [Koller et al., 2016b] combines the discrimina-
tive abilities of CNNs with the sequence modelling capabil-
ities of HMM, and achieves the WERs of 38.3% and 38.8%
on dev and test set. As seen from the results, our method out-
performs the state-of-the-art by 1.4% on test set, with a lower
WER of 37.3%. With iterative optimization, our proposed
architecture achieves the state-of-the-art performance.

5 Conclusion

This paper presents a deep learning framework for continu-
ous sign language recognition based on 3D-ResNet and di-
lated convolutional network, with an iterative optimization
strategy. We use connectionist temporal classification ap-
proach to align each clip to its corresponding gloss label
in sentence, and utilize these generated alignment proposals
(so-called pseudo-labels) to fine-tune our feature extractor.
We alternately optimize our 3D-ResNet for feature extraction
and dilated convolutional network for pseudo-label genera-
tion. We conduct experiments on a large continuous sign lan-
guage benchmark RWTH-PHOENIX-Weather dataset. Our
approach outperforms the state-of-the-art with a lower WER,
which demonstrates the effectiveness of our method.
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