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ABSTRACT
Music-driven dance synthesis is a task to generate high-quality
dance according to themusic given by the user, which has promising
entertainment applications. However, most of the existing methods
cannot provide an efficient and effective way for user intervention
in dance generation, e.g., posture-controllable. In this work, we
propose a powerful framework named PC-Dance to perform adap-
tive posture-controllable music-driven dance synthesis. Consisting
of an music-to-dance alignment embedding network (M2D-Align)
and a posture-controllable dance synthesis (PC-Syn), PC-Dance al-
lows fine-grained control by input anchor poses efficiently without
artist participation. Specifically, to relieve the cost of artist par-
ticipation but ensure generating high-quality dance efficiently, a
self-supervised rhythm alignment module is designed to further
learn the music-to-dance alignment embedding. As for PC-Syn, we
introduce an efficient scheme for adaptive motion graph construc-
tion (AMGC), which could improve the efficiency of graph-based
optimization and preserve the diversity of motions. Since there
is few related public dataset, we collect an MMD-ARC dataset for
music-driven dance synthesis. The experimental results on MMD-
ARC dataset demonstrate the effectiveness of our framework and
the feasibility for dance synthesis with adaptive posture controlling.
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Figure 1: The dance synthesis by PC-Dance. With music and
anchor poses input given by the user, the adaptive motion
graph construction (AMGC) module will update an efficient
motion graph for the given music. To provide fine-grained
control over dancemotions, the dance synthesis by PC-Dance
is performed with the anchor poses.

1 INTRODUCTION
Dance is inseparable from our daily life of all time and it could
be found everywhere, such as in film and games. Generally, dance
is based on music, and dancers attempt to convey the content in
music with limb movements according to their understanding of
art. However, the conventional choreography of high-quality dance
always requires the participation of artists for amazing presentation.
It is common to cost lots of money for choreographing a high quality
dance. Therefore, a music-driven dance synthesis model that can
automatically generate corresponding high-quality dances from
musical input would be desirable for its promising applications,
such as daily entertainment and industrial production.

Recently, music-driven dance synthesis [1, 6, 18, 28, 31, 32, 35]
has attracted more attention in decades. However, due to the hard
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interpretability of deep learning, most of existing generative model-
basedmethods [10, 21, 22, 29] narrow their ability in short-term gen-
eration, and thus they are poor at generating high-quality dances of
a long duration (tens of seconds), leading to either motion freezing
or simple repetition. Therefore, many approaches [6, 16, 24, 25, 31]
believe that the graph-based framework is the de facto standard
solution to music-driven dance synthesis. However, existing works
[6, 24, 25] have not yet exhaustively explored for the direct con-
trol of fine-grained dance movements (i.e., poses), leading to bad
controllability for usage. Moreover, most of existing graph-based
methods [16, 31] only consider the smoothing between motion
nodes, ignoring the rules of choreography. Although some works
[6, 24, 25] have considered this issue, they still failed to efficiently
expand newmotion data since the construction of the motion graph
is heavily dependent on the participation of artists.

To address these problems and enable more flexible user inter-
vention, we propose a new framework named PC-Dance to perform
adaptive posture-controllable music-driven dance synthesis, which
allows fine-grained control by input anchor poses efficiently with-
out artist participation. Our system mainly consists of an music-to-
dance alignment embedding network (M2D-Align) and the posture-
controllable dance synthesis (PC-Syn). With the given music and
anchor poses, PC-Syn could generate high-quality dance according
to the user’s expectations in a fine-grained manner with a posture
constraint. Specifically, to ensure generate high-quality dance effi-
ciently without artist participation, we construct a self-supervised
rhythm alignment module by using the pseudo-label of the rhythm
extracted frommusic to further learn the music-to-dance alignment
embedding. Moreover, before the posture-controllable dance syn-
thesis, an adaptive motion graph construction (AMGC) scheme is
employed in our modelling with an indicator vector to improve the
efficiency of graph-based optimization and preserve the diversity
of motions.

Additionally, since there are few related datasets released, we
collect a new dataset to evaluate dance synthesis, called the MMD-
ARC dataset. TheMMD-ARC dataset contains 213 entire danceswith
the length of 11.3 hours in total. For graph-based dance synthesis
evaluation, there are 20,319 units of music-dance pairs in theMMD-
ARC dataset.We have edited out the abnormal data from the original
dance data. This dataset will be available.

In summary, our contributions are three-fold:
• An music-driven dance synthesis system (PC-Dance) is pro-
posed, which allows fine-grained control by input anchor
poses efficiently without artist participation;

• Self-supervised rhythm alignment is proposed for further
learn the music-to-dance alignment embedding in a self su-
pervision manner without artist participation;

• An efficient scheme for adaptive motion graph construction,
which could improve the efficiency of graph-based optimiza-
tion and preserve the diversity of motions.

2 RELATEDWORK
2.1 Music-to-Dance Cross-Modal Mapping
Music-to-dance cross-modal mapping learning is a task to learn
feature mappings for music and dance, which is a subtask of the
music-driven dance synthesis. To better associate dance motions

with music, existing works [6, 8, 9, 12, 14, 15, 20–22, 26, 30, 31]
have mainly addressed this problem in two manners, namely the
early traditional feature-based methods and the recent popular
network learning-based methods. The early traditional feature-
based methods [14, 20, 26, 30, 31] mainly compute the similarity
between the music features (e.g., onset, chroma) extracted from
music signals and the dance motion features (e.g., joint trajectories,
hand and foot positions) extracted from dance motions, and find the
mapping relationship by data matching. On the other hand, most of
the network-based learning methods [9, 12, 22] perform mapping
learning with score regression by learning deep features for music
and dance motion. Specially, [6] constructs an embedding space
with cross-modal mapping relationships between music and dance
by considering the style and rhythm embeddings ofmusic and dance
separately, and then jointly learning the embedding spaces of them.
By contrast, our method also adopts the modelling in embedding
space, but different from [6],we emphasize learning the cross-modal
mapping by means of directly embedding music and dance into
the same space, and a self-supervised learning scheme is adopted
for rhythm embedding to moderately learn the rhythm mapping
relationship between music and dance. This is because there is
no strong one-to-one correspondence between dance rhythm and
music rhythm.

2.2 Graph-based Motion Synthesis
Graph-based motion synthesis [14, 23, 31, 33] aims to synthesize
new 3D skeletal motions from an existing motion database. Inspired
by [17], which generates new motions by cutting and pasting exist-
ing motion fragments from the database, early motion synthesis
methods [2, 16, 19] introduce the concept of motion graphs, casting
the motion synthesis into the formulation of finding a path in a pre-
built motion graph. Some methods [14, 15, 31] optimize pathfinding
by constructing music-to-dance mapping constraints. Several ap-
proaches [23, 27] model this problem using hidden Markov models
(HMM), which could be solved by dynamic programming or beam
search algorithms efficiently. Recently, manymethods [3, 6] have ap-
plied motion synthesis to dance synthesis. However, these methods
are still limited by the pre-built motion graphs, and the construction
of different motion graphs will directly affect the efficacy of motion
synthesis. Therefore, we introduce a strategy of adaptively updating
the motion graph, by which the content of the motion graph can
be adaptively optimized while ensuring the efficient construction
of the motion graph.

3 METHODOLOGY
In this section, we will introduce our adaptive posture-controllable
music-driven dance synthesis framework PC-Dance in details, as
shown in Figure 2. In our framework, a music-to-dance alignment
embedding network is construct to learn the cross-modal mapping
from music to dance, which consists of a music-to-dance style
alignment module and a self-supervised rhythm alignment module.
Thereafter, given a piece of music and posture tokens, our PC-
Dance generates a piece of dance with graph optimization on a
motion graph constructed adaptively for the given music. To better
understand the pipeline of the music-driven dance synthesis based
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Figure 2: The overall of our proposed framework PC-Dance. In our system, firstly music-dance pairs are fed into corresponding
encoders to learn music-to-dance alignment embedding. Then, with the learned embedding networks, music and anchor poses
are input to perform graph optimization on an adaptive motion graph. Finally, according the optimal path obtained through
the graph optimization, a controllable dance is generated, including the anchor poses.

on motion graph, we first make the problem formulation clear as
below.

3.1 Problem formulation
Existing works for music-driven dance synthesis are mainly formu-
lated in two steps, i.e., (1) learning the music-to-dance cross-modal
mapping and (2) generating dance by inferring with given music.
For our setting of graph-based dance synthesis, the key of dance
generation is to perform graph optimization on a constructed mo-
tion graph to find an optimized path of motion nodes, and finally
post-processing is utilized to accomplish the dance synthesis.

To learn the music-to-dance cross-modal mapping, high-quality
pairs of music and dance are required for training an embedding
network. We denote the raw data of a pair of music and dance as
(𝑚0, 𝑑0), and the embedded features could be represented as

(𝑚1, 𝑑1) = (E𝑚 (𝑚0), E𝑑 (𝑑0)), (1)

where𝑚1, 𝑑1 ∈ R𝑘 represent the embedded features of𝑚0 and 𝑑0,
respectively. E𝑚 (·) and E𝑑 (·) are the embedding networks to map
music and dance into the same embedding space, respectively. For
graph-based music-driven dance synthesis, a database (denoted as
B) containing lots of segments of dance is commanded for con-
structing a motion graph (denoted as G and G = (V,E)), where the
nodes V represent the features of the segments of dance (mainly
extracted by the learned E𝑑 (·)). Since the motion graph is a directed
graph, the edge 𝐸𝑖→𝑗 , which represents the connection from node

𝑖 to node 𝑗 , could be written as

𝐸𝑖→𝑗 =

{
1, 𝑇0 (𝑖, 𝑗) ≤ 𝛿 ;
0, otherwise;

(2)

where 𝑇0 (𝑖, 𝑗) denotes the transition gap from node 𝑖 to node 𝑗 and
𝛿 is a hyper-parameter threshold to limit the number of edges.

For graph optimization, a cost function C(·) is designed and
employed to measure the cost of finding paths on the motion graph,
which consists of many observational terms well-designed between
the features of input music (extracted by the E𝑚 (·)) and the features
of motion node (mainly extracted by the learned E𝑑 (·)). With a
proper optimization method to minimize the cost function C(·), an
optimized path 𝑝𝑜 is determined. Finally, post-processing is used to
generate the objective dance according to the optimized path 𝑝𝑜 .

3.2 Music-to-Dance Alignment Embedding
As mentioned above, firstly we propose a music-to-dance alignment
embedding (M2D-Align) network to learn the music-to-dance cross-
modal mapping. As shown in Figure 2, our M2D-Align network is
composed of two modules, a music-to-dance style alignment mod-
ule to learn a embedding space for aligning the style latent feature
of music and dance motion, and a self-supervised rhythm alignment
module to guide the embedding space learning the motion rhythm
with the supervision of music rhythm.

3.2.1 Music-to-Dance Style Alignment. With the difference of re-
gional culture and the development for thousands of years, both
music and dance have been differentiated into various sub-style
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genres. In general, the dance is choreographed according to the
referred music and the style of dance naturally matches the that
of music. Therefore, to generate a high-quality piece of dance, the
style of dance should be consistent to that of the given music.

As discussed above, although there exist some differences be-
tween the music and dance genres, the style of music is dominant
to the style of dance from the choreography perspective, and the
style of dance usually could be described by the corresponding
music. Thus, we develop a music-to-dance style alignment module
to learn the unified style embedding of the pairs of music and dance.
Music-dance unit pairs, which are with the length of 𝑡 seconds, are
utilized in our modelling. As in Equation (1), the style embedding
could be expressed as

(𝑚𝑠 , 𝑑𝑠 ) = (E𝑠
𝑚 (𝑚𝑠0), E𝑠

𝑑
(𝑑𝑠0)), (3)

where 𝑚𝑠 ∈ R𝑘 and 𝑑𝑠 ∈ R𝑘 represent the style embedding of
𝑚𝑠0 and 𝑑𝑠0, respectively. E𝑠

𝑚 (·) and E𝑠
𝑑
(·) are the style embedding

encoders for music and dance, respectively.
To unify these two embedding spaces into the same space, the

distance of music and dance embedding from the same unit pair
should be close. Thus, we form a loss function to learn unified style
embedding, which could be written as

L𝑢 =

𝑁∑︁
𝑖=1



𝑚𝑖
𝑠 − 𝑑𝑖𝑠




2 + L𝑐𝑙𝑠 , (4)

where𝑚𝑖
𝑠 and𝑑𝑖𝑠 denote the style embedding of the 𝑖-thmusic-dance

pair. 𝑁 is the number of sample pairs. L𝑐𝑙𝑠 is the classification loss
of music and dance, and it is implemented by a cross entropy loss.

Moreover, to better learn discriminative embedding, a triplet loss
is used to the style embedding learning. Therefore, we can write
the final loss for M2D-Align as

L𝑠𝑎 =

𝑁 ′∑︁
𝑖=1

(


𝑚𝑎 (𝑖)
𝑠 − 𝑑

𝑝 (𝑖)
𝑠




2
2
−



𝑚𝑎 (𝑖)

𝑠 − 𝑑
𝑛 (𝑖)
𝑠




2
2
+ 𝜖

)
+ L𝑢 , (5)

where L𝑠𝑎 denotes the loss of our music-to-dance style alignment,
and the features with superscripts 𝑎(𝑖), 𝑝 (𝑖), 𝑛(𝑖) denote the anchor,
positive and negative sample of the 𝑖-th triplet, respectively. 𝑁 ′ is
the number of triplets. 𝜖 is a hyper-parameter.

3.2.2 Self-Supervised Rhythm Alignment. It is common that the
style consistency between music and dance requires the range and
speed of dance motion fit the mood conveyed by the music. More-
over, with the development of dance, there are many conventional
dance units for various kinds of music style. For example, given a
piece of music whose style is “cute”, the style consistency requires
to use many cute dance units to generate a piece of cute dance
(i.e., 𝑀𝑐𝑢𝑡𝑒 → {𝑑𝑐𝑢𝑡𝑒 (0) , 𝑑𝑐𝑢𝑡𝑒 (1) , ...} → 𝐷𝑐𝑢𝑡𝑒 ). Thus, the style
consistency aims to ensuring the mood between music and dance
is matching, and it just constrains the content of dance (choos-
ing dance units in the same style) according to the given music.
However, an expressive dance performance could not be successful
without performing the right movement at those key timings (i.e.,
rhythm). Rhythm is important for a given music to choreograph a
wonderful dance. Therefore, the rhythm consistency between mu-
sic and dance is necessary. We attempt to learn the music-to-dance

10000010 00010010 01010010 01000100

…

Music beat
feature extractor

Clustering via 
beat features … …

…

…

Class A

Class B

Class C

Figure 3: An example of getting the pseudo-labels of rhythm
notes.

rhythm alignment, but the annotations of dance rhythm are diffi-
cult to acquire for its high labor-consumption, especially requiring
artists’ assistance. Therefore, to tackle this problem, we construct a
self-supervised rhythm alignment module to learn the embedding
space equipped with music-to-dance rhythm alignment in an self
supervised manner.

Specifically, as shown in Figure 3, we extract music beat feature
through a beat detection model [4] as music rhythm feature for the
pairs of dance and music unit, and it could be expressed as

𝑅𝑚 = A(𝑚0). (6)

Then, we use K-Means to group the rhythm features into 𝑃 clusters,
and the indices of the clusters𝑌𝑝 are used as the rhythm annotations
for corresponding music and dance units. In our self-supervised
modelling, the 𝑌𝑝 is regarded as the pseudo-label of the rhythm. As
in Equation (1), the rhythm embedding could be expressed as

(𝑚𝑟 , 𝑑𝑟 ) = (E𝑟
𝑚 (𝑚𝑟0), E𝑟

𝑑
(𝑑𝑟0)), (7)

where𝑚𝑟 ∈ R𝑘 and 𝑑𝑟 ∈ R𝑘 represent the rhythm embedding of
𝑚𝑟0 and 𝑑𝑟0, respectively. E𝑟

𝑚 (·) and E𝑟
𝑑
(·) are the rhythm embed-

ding encoders for music and dance, respectively.
To jointly learn the rhythm embedding, we form the rhythm

fusion features, written as

𝑅𝑚𝑑 = E𝑟
𝑚𝑑

(𝑚𝑟𝑠 ⊕ 𝑑𝑟𝑠 ), (8)

where 𝑅𝑚𝑑 represents the rhythm fusion features, and ⊕ is a con-
catenating operator. E𝑟

𝑚𝑑
(·) is an encoder to fuse the rhythm em-

bedding of music and dance.𝑚𝑟𝑠 = (𝑚𝑟 ⊕𝑚𝑠 ) and 𝑑𝑟𝑠 = (𝑑𝑟 ⊕ 𝑑𝑠 ).
The loss function of our self-supervised rhythm alignment could

be expressed as

L𝑟 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑅𝑚𝑑 , 𝑌𝑝 ), (9)

where 𝑌𝑝 is the pseudo-label of rhythm and 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (·, ·) is a
cross entropy loss function.

3.3 Posture-controllable Dance Synthesis
To make the dance synthesis more user-controllable, we construct
a method to perform posture-controllable dance synthesis, where
the input data does limit to music and users could feed posture
anchors to somewhat control the content of generated dance. In
our posture-controllable dance synthesis, apart from the input mu-
sic, the posture anchors are optional to input as a control term.
Then, to balance the variety of dance units and the searching space,
we introduce an adaptive motion graph construction scheme to
adaptively update the motion graph for the given music.
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3.3.1 Inference Input. For the inference stage, the input music is
required, and the posture anchor is optional. Given the inferring
music𝑀𝑖𝑛 , it will be divided into a unit sequence (𝑚0

𝑖𝑛
,𝑚1

𝑖𝑛
, ...,𝑚𝐼

𝑖𝑛
)

where every element represents a 𝑡-second music unit and 𝐼 de-
notes the number of the elements. For posture anchor input, user
could optionally give the pose sequence (𝑝0

𝑖𝑛
, 𝑝1

𝑖𝑛
, ..., 𝑝

𝐽
𝑖𝑛
) where the

element represents the pose data (i.e., key-points format) and 𝐽 is
the number of poses.

3.3.2 Adaptive Motion Graph Construction. As mentioned in Sec-
tion 3.1, a motion graph will be constructed for graph-based dance
synthesis from the database B. To improve the efficiency of graph-
based optimization and decrease the space consumption, a adaptive
motion graph construction scheme is employed in our modelling.
Specifically, an indicator vector is constructed, and it is written as

Î =

{
1, 𝑆0 (𝑣𝑖 , 𝑀𝑖𝑛) ≥ 𝜃 ;
0, otherwise;

(10)

where 𝑆0 (·, ·) is a similarity function, 𝑣𝑖 denotes the 𝑖-th node in
the motion graph, and𝑀𝑖𝑛 is the given music for inference. 𝜃 is a
hyper-parameter. Considering the stability of our motion graph,
the final indicator vector I𝑎 = Î∥I0 where I0 is the indicator of
some pre-defined nodes which come from several pieces of general
dance. ∥ is the or operator.

With the I𝑎 , we can obtain the node set V𝑎 , and the formulation
of 𝐸𝑎 is similar to Equation 2. The transition gap function 𝑇0 (𝑖, 𝑗)
is to calculate the distance from the last frame of node 𝑖 to the first
frame of node 𝑗 .

3.3.3 Graph-based Optimization. To perform the graph-based op-
timization, we should design a cost function to guide our model to
find an optimized path and generate a piece of high-quality dance.
In the controllable setting, to ensure the input anchor poses to be
synthesized into the generated dance sequence well, we constrain
the posture anchor by calculating the similarity between poses and
motion nodes, which could be expressed as

𝑆𝑎𝑝 (𝑖, 𝑗) = max
𝑙

𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚(𝑝𝑖𝑖𝑛, 𝑣
𝑗

𝑝 (𝑙) ), (11)

where 𝑆𝑎𝑝 (𝑖, 𝑗) denotes the cosine similarity between the anchor
pose 𝑝𝑖

𝑖𝑛
and the node 𝑣 𝑗 , and 𝑣 𝑗

𝑝 (𝑙) represents pose information of
the 𝑙-th frame in the node 𝑗 .

Moreover, for a piece of high-quality dance accompanied with
given music, not only the consistency in style and rhythm between
music and dance is important, but also should the smoothness and
coordination of the motion be considered. To search a path of nodes
on the motion graph with the same style and rhythm consistency
as the given music, we close the distance of embedding features of
music and dance motion with the learned style encoder E𝑠 (·) and
rhythm encoder E𝑟 (·). It could be written as

C𝑐𝑜𝑛𝑠 (𝑖) = 𝜆1D𝑠 (𝑚𝑖
𝑠 , 𝑑

𝑖
𝑠 ) + 𝜆2D𝑟 (𝑚𝑖

𝑟 , 𝑑
𝑖
𝑟 ), (12)

whereD𝑠 (·, ·) andD𝑟 (·, ·) are the functions to measure the distance
of style embedding between the music and dance as well as that of
rhythm embedding, respectively. In our experiments, D(·, ·) is the
sum of Euclidean distance and cosine distance.

To ensure the smoothness of the generated dance, we constrain
that the adjacent nodes in the searched path should be with small

gap between the node transition. It could be computed by

C𝑡𝑟𝑎𝑛 (𝑖, 𝑖 + 1) = D𝑡 (𝑣𝑖𝑜 , 𝑣𝑖+1𝑜 ), (13)

where 𝑣𝑖𝑜 denotes the 𝑖-th node in the searched path and D𝑡 (·, ·) is
the function to calculate the pose distance (Euclidean distance of
joints in our setting) between the last frame of a node and the first
frame of the next node.

The coordination of dance motions is relatively carefully de-
signed according to the choreography rules. Typically, it takes into
account the range of motion of the dance, the symmetry and rep-
etition of the dance, and the stretch of the dancer’s limbs. In our
system, the range of motion of the dance is limited to a certain area,
which could also encourage the system to search for symmetrical
dance units to offset the overall range of motion. We write this
constraint as

C𝑟𝑎𝑛𝑔 (𝑖) =

������ 𝑖∑︁
𝑗=1

D𝑝 (𝑣 𝑗𝑜 )

������ , (14)

where 𝑣 𝑗𝑜 denotes the 𝑗-th node in the searched path and D𝑝 (·)
represents the function to measure the range of motion of the node,
namely the accumulation of position coordinate vectors.

In a short term of dance, little repetition of motion and great
limb stretch are usually required to perform more amazing effect.
For this purpose, we design a constraint condition to penalty the
repeated nodes in a sliding window when searching the optimized
path. Moreover, a liveness function of motion is utilized to guide our
system to search a motion path with great limb stretch. Therefore,
these two constraints could be expressed as

C𝑟𝑒𝑝𝑒 (𝑖) = 𝐶𝑜𝑢𝑛𝑡 ({𝑣𝑖−𝑝+1𝑜 , 𝑣
𝑖−𝑝+2
𝑜 , ..., 𝑣𝑖−1𝑜 }, 𝑣𝑖𝑜 ) ∗ 𝛼, 𝑖 ≥ 𝑝, (15)

C𝑠𝑡𝑟𝑒 (𝑖) =
𝛽

Dℎ (𝑣𝑖𝑜 )
, (16)

where 𝑣𝑖𝑜 denotes the 𝑖-th node in the searched path and𝐶𝑜𝑢𝑛𝑡 (𝑄, 𝑣)
denotes the function to count the number of occurrences of node 𝑣
in sequence 𝑄 . Dℎ (·) represents the liveness function to calculate
the motion difference among joints of dancer’s skeleton. 𝛼 and 𝛽

are hyper-parameters.
Finally, the overall cost function, which guides our model to find

an optimized path, could be written as
C𝑜𝑣𝑒𝑟 (𝑖) = 𝜆3 ∗ C𝑜𝑣𝑒𝑟 (𝑖 − 1) + 𝜆4 ∗ C𝑡𝑟𝑎𝑛 (𝑖 − 1, 𝑖)

+ 𝜆5 ∗ C𝑐𝑜𝑛𝑠 (𝑖) + 𝜆6 ∗ C𝑟𝑎𝑛𝑔 (𝑖) + 𝜆7 ∗ C𝑟𝑒𝑝𝑒 (𝑖)
+ 𝜆8 ∗ C𝑠𝑡𝑟𝑒 (𝑖) + 𝜆9 ∗ 𝑆𝑎𝑝 (𝑃𝑖𝑛, 𝑖),

(17)

where 𝜆𝑖 (𝑖 = 3, 4, ..., 9) are hyper-parameters and 𝑃𝑖𝑛 is the input
anchor poses. When no anchor poses input, 𝜆9 is set to zero. The
optimal dance motion path can be efficiently synthesized using a
dynamic programming algorithm [11].

4 THE MMD-ARC DATASET
There is few dataset available for our model evaluation. Thus, we
collect a new dataset, called the MikuMikuDance Archive (MMD-
ARC) Dataset, for our following experimental study. The details of
the MMD-ARC dataset could be found in Table 1.

- Dataset Construction Details. We downloaded 343 complete
dance motion data with background music from the MikuMiku-
Dance community. After manually filtering out the noise samples,
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Table 1: Details of theMMD-ARC Dataset

music-dance pair
#Samples 213

Total hour length 11.3
#Label 4
#Unit 20319

#Training set 16264
#Testing set 4055

the remaining 213 complete dance motion samples were used as
the original data of the MMD-ARC dataset, with a total time of
11.3 hours. The four different languages of music in the dataset are
used as the labels. We randomly split the dataset into 170 complete
training samples and 43 complete testing samples with a ratio of
4:1. To expand the data and facilitate the construction of motion
graphs, we divided the complete dance samples into music-dance
unit pairs at equal intervals with a duration of 2 seconds, and finally
obtained 20,319 unit pairs, including 16,264 training unit pairs and
4,055 pair of test units. Samples of the MMD-ARC dataset can be
found in our supplementary materials.

5 EXPERIMENT
In this section, we will introduce our experimental setting and
the post-processing of the generated dance for better presentation.
Then, quantitative and qualitative comparisons are conducted with
several state-of-the-art methods. We also analyze the contributions
of main components of our system through ablation study. Finally,
the visualization of posture-controllable evaluation demonstrates
the promising controllability of our proposal.

5.1 Experimental Setting
The music units and dance units are uniformly formatted to 2
seconds.We set 𝛿 as 20, 𝜃 as 0.95, and 𝜖 as 0.5. The hyper-parameters
in the cost function is set to: 𝛼, 𝛽, 𝜆1, 𝜆2, ..., 𝜆9 = 100, 100, 1, 10, 1, 2, 1,
10, 1, 10, 100. These hyper-parameters could be adjusted according
to the system focus. Our model is implemented in PyTorch and the
networks are trained on a P40 GPU server. The posture-controllable
dance synthesis is tested on a desktop with a 3.80GHz i7-10700K
CPU, 32GB RAM and a GeForce RTX 3080 GPU. The dimension
𝑘 of embedding features is 32. The number of clusters grouping
the rhythm features by K-means is 13. We adopt the music tagging
network in [7] as our backbone for the style embedding of music
and dance. The backbone of the rhythm embedding is adopted by
the choreomusical rhythm embedding network in [6]. We train
our music-to-dance alignment embedding network by using Adam
optimizer with a batch size of 128 and a learning rate of 0.001 for
1000 epochs. Refer to Supplementary Materials for more details.

5.2 Data Pre-processing and Post-processing
As in [6], for style embedding alignment, we downsample music
data to 16kHz and compute the log-amplitude mel spectrograms
with 96 mel bins and 160 hop size to learn music style embedding.
For dance motion input, the 6D representation [34] for the 3D

Table 2: The results of our model compared with other meth-
ods on theMMD-ARC dataset.

Method FID (↓) Style Acc. (↑) Diversity (↑)
Real Dance 1.7 - 81.5

DanceNet [35] 93.8 61.7% 57.7
Learning2dance [10] 25.2 65.2% 67.8
AI Choreographer* [6] 10.1 69.1% 74.2

Ours 3.8 74.1% 76.3

rotations data of 22 joints is utilized to learn the dance style embed-
ding. Thus, for 2-second unit pairs (60 key frames in 30 fps dance
motions), the shapes of𝑚𝑠0 and 𝑑𝑠0 are [1, 96, 200] and [6, 22, 60].
For rhythm embedding alignment, we extract the spectral onset
strength curve [5] and RMS energy curve for music input and thus
the shape of 𝑚𝑟0 is [2, 200]; for dance motions we compute the
motion kinematic curve, two hand trajectory curvature curves and
two foot contact curves, and thus the shape of 𝑑𝑟0 is [5, 60].

For the optimal node path of generated dance, there always exist
gaps in the transfer between nodes since the nodes may come from
different dance segments. Therefore, to generate smooth dance,
data post-processing to smooth the gaps in the node transfer is nec-
essary. Inspired by [2], we design a smoothing function to eliminate
the discontinuities at node transfer. Refer to the supplementary
materials for details.

5.3 Evaluation Metric
To compare our method with existing works [6, 10, 35], we utilize
Fréchet inception distance (FID) score [13] to measure the distance
between the distribution of generated dances and that of the real
ones. Following [6, 18], a motion auto-encoder is trained on our
MMD-ARC dataset and used for feature extraction. Similarly, to
evaluate the diversity of generated dances, we calculate the aver-
age feature distance between generated dances for different music
inputs, as used in [6, 18]. Moreover, style accuracy is computed to
better present the performance of style embedding. Refer to our
supplementary materials for more details of these metrics.

5.4 Comparisons
Since the MMD-ARC Dataset is brand new for existing methods,
we have tried our best to evaluate many advanced methods whose
codes are available on MMD-ARC and re-implement the state-of-
the-art work, AI Choreographer [6] for comparisons. Finally, two
deep generative models are considered, DanceNet [35] and Learn-
ing2Dance [10]. They are the most recently proposed models with
the codes available. Besides, without the rhythm signature anno-
tated by artists, the current state-of-the-art graph-based method,
AI Choreographer [6], could not be completely implemented and
evaluated on MMD-ARC dataset. To overcome this dilemma, we
replaced the requirement of rhythm signature in AI Choreogra-
pher [6] with our self-supervised rhythm alignment, and called the
modified version of AI Choreographer [6] as “AI Choreographer*”.

As shown in Table 2, our method achieves the best performance
on all three evaluation metrics, and outperforms three baselines (i.e.,
DanceNet [35], Learning2Dance [10] and the modified version of
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DanceNet

Learning2dance

AI Choreographer*

Ours

Figure 4: Dance motions generated by four different methods for an English song. ‘DanceNet’ [35] and ‘Learning2dance’ [10] are
two competitive deep generative models, and ‘AI Choreographer*’ is the modified version of the state-of-the-art graph-based
method, AI Choreographer [6], without rhythm signature.

Table 3: The results of our ablation study on theMMD-ARC
dataset.

Method FID (↓) Style Accuracy (↑) Diversity (↑)
Full model 3.8 74.1% 76.3

w/o Triplet Loss 4.2 69.8% 74.6
w/o SSRA 4.8 68.7% 74.2

Table 4: Dance synthesis time required for different sizes of
motion graph on the MMD-ARC dataset.

Edge Count Music Duration Synthesis time
100k 60 s 1.54 s
100k 120 s 3.20 s
200k 60 s 3.31 s
200k 120 s 6.47 s

AI Choreographer [6] as “AI Choreographer*”) with improvements
of more than 5% by comparison on style accuracy. The smallest FID
score of our proposal reveals that the generated dances by our sys-
tem are in a more similar distribution to the real dances, while the
greatest score of ‘Diversity’ implies that our system could generate
various dances for difference music inputs better. Moreover, the
results indicate that the performance of our method is closest to
the real dance on each evaluation metric, which demonstrates the
effectiveness of our method.

5.5 Model Analysis
In this section, we first make the qualitative comparison by visual-
ization the generated dance motions synthesized by the baselines
and our method, and analysis the difference among them. Then, an
ablation study is conducted to explore the contributions of each
main component in our framework. To better evaluate the per-
formance of our proposal, a user study has been designed for the
generated dances synthesized by the baselines and our method.
Moreover, to evaluate the efficiency of our system, we also test the
dance synthesis time-consuming of our model on motion graphs
with different sizes and music input with different lengths. Finally,
posture-controllable testing is performed to check the ability of our
system to directly control the dance generation with posture input.

5.5.1 Generated Dance Visualization. To view the quality of the
generated dances, we visualized the dance motions generated by
four different methods for an English song, as shown in Figure 4.
From Figure 4, we find that dances generated by the deep generative
models (i.e., DanceNet [35] and Learning2dance [10]) only has left-
and-right swings at the elbow and knee joints, with little movement
of the entire body, and the dance movements are relatively stiff. By
contrast, dance motions generated by the graph-based methods (i.e.,
the modified AI Choreographer and our proposal) are more natural,
which can express the wild of that English song. This partly benefits
from the graph-based scheme, where the motions are synthesized
from real dance motions in the database. Compared with the “AI
choreographer*”, our method could find the optimal path where the
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Anchor Poses

Figure 5: Controllable dance motions generated with anchor poses input.

Overall                       Style Consistency       Rhythm Consistency             Smoothness                          Reality

Figure 6: User study results.

node motions are more stretched to generate more amazing dance
performance. Watch more demos in our supplementary materials.

5.5.2 Ablation Study. To investigate the contributions of eachmain
component in our framework, we conducted an ablation study on
our model by removing one of the components from our full model.
As shown in Table 3, when removing the triplet loss in our music-
to-dance alignment embedding, the model performance decreased
more than 5%, which demonstrates the contrastive learning scheme
is useful to better align the embedding spaces of music and dance
motion. Moreover, when we removed the self-supervised rhythm
alignment module (SSRA), a drop of 7% was obtained, which implies
that the rhythm information could help the alignment between
music and dance. Since the impact of each constraint in our cost
function is difficult to present by figures, we evaluate them through
video presentation in our supplementary materials.

5.5.3 Posture-Controllable Testing. To verify the controllability of
our method, we input anchor poses to controllably generate dance
motions, as shown in Figure 5. It can be observed that our proposed
method can smoothly generate dance motions according to the
postures input by the user, which includes preset anchor poses. The
results indicate that the controllable setting can improve the dance
generation diversity and user interactivity of our system.

5.5.4 Dance Synthesis Time. To ensure that our system can be
employed in real production, the efficiency of dance synthesis is
an important consideration. Therefore, we test the dance synthesis
time-consuming of our model on motion graphs with different sizes
and music input with different lengths. As shown in Table 4, for the
motion graph with 100k edges on the MMD-ARC dataset, it took
1.54 seconds for our system to perform dance synthesis for a 60-
second music input. Roughly, the time spent grows linearly with the
number of edges and the duration of the music on the database from
MMD-ARC dataset. The results demonstrate the good efficiency of
our system. Moreover, we tested the impact of the hyper-parameter
𝜃 in our AMGC on a 60-second song, and the results is presented in

our supplementary materials, which demonstrate the effectiveness
of our AMGC. Refer to Supplementary Materials for more details.

5.5.5 User Study. To eliminate the evaluation bias caused by sub-
jective differences as much as possible, we designed a user study
about generated dances from seven sources, including the real dance
and those generated by DanceNet [35], Learning2dance [10], the
modified AI Choreographer [6], our proposal, our model without
the range constraint (‘w/o CKT’, Coordination-Keeping Tools) and
that without adaptive motion graph construction (‘w/o AMGC’).
In this study, we asked the surveyed users to score each of given
dances in [1, 10] on five evaluation items, including the overall,
style consistency, rhythm consistency, smoothness and reality. 16
participants were invited in our study, and 64 score data for each
evaluation item were obtained to be averaged as the final score of
each method. As shown in Figure 6, we find that the dance mo-
tions generated by our dance synthesis system got the comparable
scores at all evaluation items compared with the real dances, which
demonstrates the great capability of our system to high-quality
dance synthesis.

6 CONCLUSION
In this paper, a new framework, PC-Dance, is designed for adaptive
posture-controllable music-driven dance synthesis, which allows
fine-grained control by input anchor poses efficiently without artist
participation. With the given music and anchor poses, our system
could generate high-quality dance according to the user’s expecta-
tions. Specifically, to ensure generate high-quality dance efficiently
without artist participation, we construct a self-supervised rhythm
alignment module to further learn the music-to-dance alignment
embedding, and introduce an efficient scheme for adaptive motion
graph construction, which could improve the efficiency of graph-
based optimization and preserve the diversity of dance motions.
The experimental results on the new collected dataset MMD-ARC
demonstrate the effectiveness of our framework and the feasibility
for dance synthesis with adaptive posture controlling.
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