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Abstract—Current continuous sign language recognition sys-
tems generally target on a single language. When it comes to
the multilingual problem, existing solutions often build separate
models based on the same network and then train them with their
corresponding sign language corpora. Observing that different
sign languages share some low-level visual patterns, we argue
that it is beneficial to optimize the recognition model in a
collaborative way. With this motivation, we propose the first
unified framework for multilingual continuous sign language
recognition. Our framework consists of a shared visual encoder
for visual information encoding, multiple language-dependent
sequential modules for long-range temporal dependency learning
aimed at different languages, and a universal sequential module
to learn the commonality of all languages. An additional language
embedding is introduced to distinguish different languages within
the shared temporal encoders. Further, we present a max-
probability decoding method to obtain the alignment between
sign videos and sign words for visual encoder refinement.
We evaluate our approach on three continuous sign language
recognition benchmarks, i.e., RWTH-PHOENIX-Weather, CSL
and GSL-SD. The experimental results reveal that our method
outperforms the individually trained recognition models. Our
method also demonstrates better performance compared with
state-of-the-art algorithms.

Index Terms—Continuous Sign Language Recognition, Multi-
lingual.

I. INTRODUCTION

AS a class of natural languages, sign languages (SL) convey
concrete semantic meanings through manual modality such
as gesture and hand movements [1], [2], [3], together with
non-manual information, i.e., facial expressions, etc. It serves
as an indispensable communication tool for deaf people in
their daily life. To facilitate such communication, continuous
sign language recognition (SLR) [4], [5], [6], [7] has been
widely investigated, which aims to automatically recognize the
sequential sign words performed by the signer in the video.
Most existing SLR algorithms are designed for single-lingual
sign language [8], [9], [10], [11], which limits the SLR system
to recognize only the specific sign language.

Similar to natural language, sign languages in different
countries are non-universal, with their specific grammars and
lexicons. In other words, different sign languages are not
mutually intelligible. To address the problem of multilingual
sign language recognition, most existing works take it for
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(a) Sign word ‘good’ in German (left) and Chinese (right).

(b) Interrogative sign word ‘what’ in German (left) and Chinese
(right).

Fig. 1: Sign word examples in different sign languages.

granted that separate models based on the same network
architecture are trained with the corresponding sign language
corpus. Although encouraging results have been achieved,
such a paradigm overlooks the fact that some low-level visual
patterns are shared across different sign languages, despite
their different linguistic rules in different countries.

For instance, the word ‘good’ performed in German sign
language and Chinese sign language share the same gestures,
as shown in Figure 1a. Besides, when a signer asks a question
in sign language, a question word at the end of the sentence is
signed. Such interrogatives sometimes follow the same visual
patterns in different sign languages. Take the word ‘what’ as
an example, both expressions in German and Chinese sign
language can be described as ‘to put both hands outward in
the front with elbows bent, and spread hands’, as shown in
Figure 1b. Such common visual patterns could be represented
and learned by multilingual settings. In other words, it is
beneficial to train the recognition model in a collaborative
way, which will promote the recognition performance over
separately trained models. As a byproduct of collaborative
multilingual sign language learning, the involved training
data is cumulatively augmented, which reduces overfitting in
learning with limited data.

In this paper, to explore the shared visual patterns across
different sign languages, we present a simple yet effective
method to recognize multiple sign languages in a unified
framework. We take advantage of multilingual sign videos to
improve the recognition performance for all sign languages
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involved. In our method, we first use a common visual encoder
to extract feature representations for all sign videos. Then, for
each sign language, a sequential module is adopted to learn
its distinctive characteristics. The shared visual patterns and
common features among all sign languages are encoded by a
sharing sequential module, which is initialized with language-
identified embeddings. To further improve the performance,
the visual encoder is refined with the max-probability align-
ment between the videos and sign words.

The contributions of this work are summarized as follows:
• To our best knowledge, we are the first to explore the

multilingual topic in continuous SLR and propose a
unified framework targeting this problem, which takes
advantage of multilingual data to improve the recognition
performance for all involved sign languages, especially
for low-resource corpus with limited labeled sign videos.

• We propose a max-probability decoding method based
on the target sequence probability matrix to obtain the
alignments between videos and sign words for further
visual encoder refinement.

• Evaluated on the RWTH-PHOENIX-Weather, CSL and
GSL-SD benchmarks, our proposed method performs
favorably against the individually optimized recognition
models and achieves state-of-the-art performance on both
datasets.

The rest of this paper is organized as follows. Section II
gives a review of the related work on deep-learning-based
continuous sign language recognition methods. In Section III,
we elaborate the proposed framework including the unified
multilingual sign language recognition network and refinement
algorithm. After that, in Section IV, we provide the exper-
imental results as well as discussions. Section V concludes
this paper, provides further insights and discusses the future
directions for this new multilingual topic.

II. RELATED WORK

In this section, we briefly review existing continuous sign
language recognition methods and elaborate their key modules,
i.e., feature extraction and sequential correspondence learning.

In the task of continuous sign language recognition (CSLR),
each sign video corresponds to a sequence of glosses in an
order consistent with the related sign actions. The problem
of continuous SLR can be formulated as a mapping learning
from a video sequence to a sign gloss sequence. Generally,
a continuous SLR system consists of two key modules, i.e.,
a visual encoder to extract video features and a sequence
learning module to learn the correspondence between the
visual features and sign glosses.

Feature representation for sign videos plays an important
role in sign language recognition [4], [12], [13], [14], [15],
[16], [17], [18], [19]. Early works utilize hand-crafted fea-
tures as video representation. They describe hand motion,
shape and appearance by using Volume Local Binary Patterns
(VLBP) [20], HOG or HOG-3D [21], [22], SIFT [23], and
motion trajectories [22], [23], [24]. Inspired by the great
success of deep neural networks, there is a growing trend
to utilize Convolutional Neural Networks (CNNs) for video

representation learning. There exist many newly designed
CNNs based on 2D convolutions [25], [26], [27], [28], [29],
[30], [31], [32], 3D convolutions [33], [34], [35], [36], [37],
and 2D/3D mixed convolutions [38], [39]. With this trend,
researchers investigate suitable CNNs for sign language recog-
nition. Oscar et al. [40] and Necati et al. [41] use 2D CNNs
as the feature extractor for RGB images in an end-to-end
way, and achieve remarkable performance in continuous SLR.
To model temporal dependency in videos, some works are
proposed [7], [42], [43]. SF-Net [44] uses mixed 2D/3D
CNN to improve SLR performance. An alternative to the
above-mentioned backbone for spatial-temporal representation
is 2D CNN followed by 1D temporal convolution network
(TCN) [6], [45], [46], which achieves the state-of-the-art
performance in continuous SLR. It is noted that this kind
of architecture (2DCNN-TCN) has become the mainstream
method thanks to its simplicity and effectiveness.

As for sequence learning, the sequential models can be
divided into three categories, i.e., recurrent neural network
with connectionist temporal classification (CTC) [47], Hid-
den Markov Model (HMM) or Hidden Conditional Random
Fields (HCRF), and Encoder-Decoder network. The Recurrent
Neural Networks (RNNs), i.e., Long Short-Term Memory
(LSTM) [48], [49], Gated Recurrent Unit (GRU) [50], have
been successfully applied to sequential problems, such as
speech recognition [51], machine translation [52], [53], gesture
understanding [54], and video captioning [55], [56], [57], [58].
CTC has been successfully applied in speech recognition [59],
handwriting recognition [60], and action recognition [61]. It
has also been explored in continuous SLR. In [6], [7], [9],
[41], bidirectional LSTM-CTC architecture is employed as a
basic model for continuous SLR and becomes the most popular
one. With the superiority of CTC, state-of-the-art performance
is achieved on the RWTH-PHOENIX-Weather benchmark.
HMM is effectively utilized in deep neural networks for
SLR and related topics [4], [62]. Oscar et al. [4], [10], [40]
propose hybrid CNN-HMMs to integrate 2D CNN with HMM
to model the state transitions for statistical continuous sign
language recognition. Similar to neural machine translation,
some related works [42], [63] attempt to adopt an attention-
aware encoder-decoder network to learn the correspondence
mapping between visual features and sign words.

Due to the lack of temporal boundary labels for the sign
gloss, continuous SLR can also be viewed as a weakly
supervised learning problem. Recent works have demonstrated
the importance of finding segment-gloss alignments, which
serve as a pseudo label for the refinement of the visual encoder.
In this way, the whole architecture can be optimized in an
iterative way for performance boosting. Pu et al. [7] propose
to use a soft Dynamic Time Warping (soft-DTW) alignment
constraint, while the warping path indicates the possible align-
ment between input video clips and sign words. In [6], [64],
Cui et al. suggest a similar pseudo label decoding method via
dynamic programming with encouraging performance.

Some previous works [7], [43] focus on improving the
network capability for learning the correspondence between
video and sign gloss from different perspectives to boost
performance. In other words, in [7], the soft Dynamic Time

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3223260

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 03,2023 at 05:01:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. **, NO. *, NOVEMBER 2022 3

Warping is utilized as the alignment constraint, while in [43],
dilated networks for temporal modeling are designed. In our
work, we only choose the most representative components as
our backbone for generality. Differently, we approach SLR
from a novel perspective by exploring multilingual SLR in a
unified framework, which contains a shared visual encoder,
an independent sequential module for each language together
with a shared sequential module. Along with the multilingual
framework, we also propose an effective refinement strategy.

III. OUR APPROACH

In this section, we first introduce three basic architectures
to deal with multilingual continuous SLR. After that, we
elaborate our proposed multilingual SLR framework followed
by optimization and refinement strategies.

A. Basic Models

Similar to NMT, we consider three basic architectures
to deal with multilingual sign language recognition shown
in Figure 2. The simplest way is to use a shared visual
encoder as well as a shared sequential model for all languages,
illustrated in Figure 2a. This simple architecture can be easily
implemented without making significant changes to the current
basic continuous SLR system. However, it ignores the domain
gap among different languages, which may lead to limited
modeling capability. Another way is to use separate sequential
models for different sign languages while sharing the same vi-
sual encoder, shown in Figure 2b. Each branch acts as same as
the classical SLR system, without sharing information across
each target sequential model. Such a paradigm is language-
aware but fails to take the complementarity of different sign
languages into consideration.

In order to take advantage of both basic architectures dis-
cussed above and avoid their limitations, the third alternative
is to add an additional shared sequential model to learn the
commonality among all involved sign languages, as well as
separate target sequential models for each sign language, as
shown in Figure 2c. In this paper, we select the third one for
our framework.

B. Network Architecture

1) Framework Overview: Our multilingual continuous SLR
system is employed on the third basic architecture illustrated
in Figure 2c. The proposed continuous SLR system consists
of a common CNN-TCN for feature extraction targeting all
sign languages involved, shown in Figure 3. We use the
separate bidirectional Long Short-Term Memory (BLSTM)
as the sequential model to learn the correspondence between
visual features and sign words for each sign language, respec-
tively. Besides, as discussed in Section I, some similar sign
words are sharing the same visual patterns among different
sign languages. To model such shared patterns and common
linguistic properties, we use an additional sequential BLSTM
to model the commonality among all sign languages. Each
branch of a specific sign language is optimized with CTC
loss.

Shared Visual Encoder Shared Sequential Model

Shared Visual Encoder

Target Sequential Model 1

Target Sequential Model K

Shared Visual Encoder

Target Sequential 
Model 1

Target Sequential 
Model K

Shared 
Sequential 

Model

……

……

(a) Basic model a: shared visual encoder and sequential model for
all target sign languages.
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(b) Basic model b: shared visual encoder, independent sequential
model for each target sign language.
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Shared Visual Encoder

Target Sequential Model 1

Target Sequential Model K
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(c) Basic model c: shared visual encoder, independent sequential
model together with a shared sequential model.

Fig. 2: Proposed three basic architectures for multilingual
SLR.

2) Visual Encoder: The target of continuous SLR is to learn
the correspondence mapping between a video X = {xt}Nt=1

and a sequence of sign glosses s = {si}Li=1, where N and
L are the number of frames in sign video and the number of
total sign glosses, respectively.

For spatial-temporal representation, we choose the main-
stream method, i.e., 2DCNN-TCN, as the backbone. This
architecture is first proposed in DNF [6] and achieves state-
of-the-art performance on continuous SLR. From then on, it
has become a popular method for comparison and has been
adopted as a baseline such as in [65], [45], [46]. Specifically,
the 2DCNN is implemented with GoogLeNet [66]. The TCN
consists of two 1D temporal convolutional layers with a kernel
size of 5, and each followed by a pooling layer with a kernel
size of 2, with the combination like conv1d-pool-conv1d-pool.
The strides for both convolutional layers and pooling layers are
set to be 1. Thus, the length of output after the visual encoder
is reduced to N/4, and the receptive field along the temporal
dimension is calculated as 16 frames. Following [6], we also
verify its stated kernel sizes as the optimal setting. Denote the
mapping function of the visual encoder CNN-TCN as Ev(·),
the feature representations F of the video after going through
CNN-TCN can be written as follows,

F = (f1, · · · , fN/4) = {Ev(xt)}Nt=1. (1)

3) Sequence Learning: Long Short-Term Memory (LSTM)
units are adopted to explore the long-range temporal depen-
dency. The LSTM unit at time step t can be represented with
the cell state Ct and hidden state ht. In LSTM, the gated
structure is introduced to control the update of the cell state
and hidden state for each time step. An LSTM unit has three
kinds of gates as different information controllers, i.e., input
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Fig. 3: Overview of our multilingual sign language recognition framework. The system consists of a common CNN-TCN
visual feature extractor, language-independent BLSTM-CTC branches, together with a shared BLSTM initialized with language
embeddings. In this work, the spatial CNN is implemented with GoogLeNet.

gate g
(i)
t , forget gate g

(f)
t , and output gate g

(o)
t as follows:

g
(i)
t = σ(Wi · [ht−1, ft] + bi), (2)

g
(f)
t = σ(Wf · [ht−1, ft] + bf ), (3)

g
(o)
t = σ(Wo · [ht−1, ft] + bo), (4)

where σ is the sigmoid active function, t is the current time
step, ft is the input feature, W and b are parameters in linear
projection. After taking the input feature, the cell state ct−1

and hidden state ht−1 from the previous time step, the current
status and output of LSTM are updated as follows:

c̃t = tanh(Wc · [ht−1, ft] + bc), (5)

ct = g
(f)
t ⊙ ct−1 + g

(i)
t ⊙ c̃t, (6)

ht = g
(o)
t ⊙ tanh(ct), (7)

where ⊙ means element-wise product.
In general, LSTM only models the temporal dependency

along a single direction, i.e., the output only depends on the
current input and features from previous time steps. To model
the temporal dependency with all input features from both
forward and backward time steps, inspired by [41], we use
bidirectional long short-term memory (BLSTM) to learn the
long-range temporal dependency of the sign videos in an end-
to-end manner. In addition, it also captures the correspondence
between visual features and sign glosses, which benefits the
following recognition. In our approach, two kinds of BLSTM
units are adopted for different purposes. On the one hand,
we expect to use an independent sequential model to learn
the mapping between the visual features and sign words,
since each sign language has its own linguistic rules. Separate
sequential branches targeting different sign languages have the
capability of capturing the characteristics of each specific sign

language and could somehow reduce the disturbance. On the
other hand, to encode similar visual patterns, i.e., the same
sign with the same meaning in different sign languages, and
the commonality among all sign languages, a shared sequential
model is introduced in our approach.

To embed the sign language identity to the shared sequential
model, we use an embedding layer to encode the categories of
the involved sign languages and initialize the hidden states and
cell states of the shared BLSTM with language embeddings.
Specifically, language embedding is a vector attached to a spe-
cific language and is learnable during training. It is computed
via the common word-to-vector mapping, which embeds each
language with a unique vector. And each vector belonging to a
certain language is randomly initialized. The separate BLSTM
branches are initialized with zero vectors, which is the same
as the classical SLR systems.

With the visual features F extracted by CNN-TCN, the
outputs of the shared sequential model Os are represented
as follows,

Os = {os|t}N/4
t=1 = BLSTMs(F ;h0 = ek, c0 = ek), (8)

where h0 and c0 are the initial hidden state and cell state,
and ek is the language embedding for the k-th sign language.
We add the shared BLSTM outputs and CNN-TCN features
for further correspondence mapping learning through the
specific sequential model targeting different sign languages.
The outputs of each separate target BLSTM branch for the
corresponding sign language are formulated as follows,

O
(k)
b = {o(k)b |t}N/4

t=1 = BLSTM
(k)
b (F +Os;h0 = 0, c0 = 0),

(9)
where k indicates the k-th kind of sign language.
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alternately processed for better sentence-level prediction.

gloss

t

t

gloss

……

B

A

C

D

𝑓𝑓1 𝑓𝑓𝑁𝑁/4𝑓𝑓2 ……

𝑓𝑓1 𝑓𝑓𝑁𝑁/4𝑓𝑓2 ……
A

B

D

C

Fig. 5: Illustration of pseudo clip-level label generation for
refinement. In the left figure, the abscissa represents the time
(or index of frames), and the ordinate is gloss. The value in
the coordinate (i, j) represents the predicted probability of the
gloss j at the timestamp fi. For the right figure, we extract
the probability at each moment in the order of the ground-
truth gloss sequence. Based on this probability matrix, we
perform dynamic programming to get the alignment path with
the maximum probability summation score.

C. Multilingual Optimization

To obtain the probability distribution corresponding to the
target sequence of sign glosses, the outputs of each BLSTM
branch are projected into categorical probabilities with a fully-
connected and softmax layer, formulated as follows,

Y (k) = Softmax(Y
(k)
t,s ) = Softmax(W

(k)
fc ·O(k)

b + b
(k)
fc ),

(10)
where superscript k indicates the type of sign language, Yt,s

is the probability of the t-th frame segment belonging to sign
word s. To optimize the multilingual network, we employ
connectionist temporal classification (CTC), with the objective
of maximizing the posterior probability of the alignment from
the source sequence to the target sequence. By introducing
a blank label “−”, CTC can deal with stillness, transitions,
and reduplicated patterns. Define a many-to-one mapping B
by removing the blank and repeated labels to obtain the final
result, the posterior probability of target gloss sequence s is
calculated as the sum of probabilities of all corresponding
alignment paths:

p(s|Y (k)) =
∑

π∈B−1(s)

p(π|Y (k)), (11)

where B−1(s) = {π|B = s} is the inverse mapping. The
CTC loss of each separate branch for different sign languages

is defined as follows,

L(k)
CTC = − ln p(s|Y (k)). (12)

For multilingual optimization, the total objective loss is the
summation of the CTC losses for all branches, written as
follows,

LCTC =

K∑
k=1

L(k)
CTC. (13)

D. CNN-TCN Refinement
In continuous SLR, the encoded visual feature plays a

vital role in final performance. However, during end-to-end
training, the CTC objective is insufficient for optimizing the
visual encoder due to the CTC spiky prediction and vanishing
gradient in the low backbone layers. Drawing the experience
of previous methods [7], [9], [40], [43], [67], we resort
to the iterative training strategy (CNN-TCN refinement) to
relieve this issue. The iterative training process is illustrated
in Figure 4.

The idea of refinement is to explicitly fine-tune the vi-
sual encoder with clip-level labels, which are obtained via
alignments between input videos and sign glosses. With this
training setup, the fine-tuned CNN-TCN is utilized at the
continuous SLR stage. These two stages can be iteratively
performed for better CNN-TCN refinement. In this work, we
propose a new method to explore the alignment between visual
segment features from CNN-TCN and the corresponding sign
glosses via dynamic programming.

We abbreviate Y (k) to Y for simplification. As for the
probability matrix Y calculated from Equation (10), we can
re-organize Y with the ground-truth sign gloss sequence. For
each sign gloss in the ground-truth label, we orderly pick
up the probabilities of all frames/segments corresponding to
the current sign gloss to form a new probability matrix Y

′
,

illustrated in Figure 5. Based on Y
′
, we perform dynamic

programming to find the alignment path with maximum decod-
ing probability. With Pi,j standing for the maximum decoding
probability of subsequence {f1, f2, · · · , fi} for visual features
and subsequence {s1, s2, · · · , sj} for sign glosses, the state
transition equation of dynamic programming is defined as
follows,

Pi,j = Y
′

i,j +max(Pi−1,j , Pi−1,j−1). (14)

After progressive calculation over full visual features and
glosses sequence, the clip-level alignments are derived and
they serve as the pseudo labels to fine-tune the visual back-
bone. Although dynamic programming cannot ensure the max-
imum decoding result of each clip during alignment extraction,
it can find an alignment path, of which the overall decoding
probability sum is the largest and better fertilizes the visual
encoder during fine-tuning.

IV. EXPERIMENTS

In this section, we perform extensive experiments to eval-
uate our method. First, the datasets and evaluation metrics
are introduced. Then we perform ablation studies on the
effectiveness of modules in our architecture. Finally, we make
comparisons with existing state-of-the-art methods.
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TABLE I: Statistical data on RWTH-PHOENIX-Weather, CSL and GSL-SD datasets.

Statistics RWTH-PHOENIX-Weather CSL GSL-SD
Train Dev Test Train Test Train Dev Test

#frames 799,006 75,186 89,472 963,228 66,529 781,414 140,138 114,603
#duration (h) 8.88 0.84 0.99 10.70 0.74 7.24 1.30 1.06
#vocabulary 1,231 460 496 178 20 310 310 310
#videos 5,672 540 629 4,700 300 8,189 1,063 1,043
#signers 9 9 9 50 50 7 7 7
out-of-vocab (%) - 0.69 0.69 - 0 - 0 0

A. Dataset and Evaluation

We conduct experiments on three public datasets, i.e.,
RWTH-PHOENIX-Weather multi-signer for German SLR [22]
and CSL [42] for Chinese SLR and GSL-SD [67] for Greek
SLR, respectively. RWTH-PHOENIX-Weather [22] dataset is
one of the most popular benchmarks for continuous SLR.
It provides RGB videos with corresponding annotations. All
videos are recorded at 25 frames per second (FPS) with the
resolution of 210 × 260. The videos contain 6,841 sentences
performed by 9 signers with a vocabulary size of 1295. The
dataset is divided into three subsets, i.e., 5,672 instances for
training, 540 for validation and 629 for testing. CSL [42]
dataset contains 178 sign words in daily communication. 100
different sentences are performed by 50 signers, with totally
5,000 videos. The dataset is divided into two subsets, 4,700
videos for training and 300 for testing. GSL-SD dataset [67] is
performed by 7 signers. The whole video instances are divided
into three subsets, 8,189 for training, 1,063 for validation and
1,043 for testing. The detailed statistical data are summarized
in Table I.

There exist many metrics for performance evaluation of
continuous SLR. As a common metric, WER (Word Error
Rate) is defined based on essentially an edit distance, which
indicates the least operations of substitution, deletion and
insertion to transform the predicted sentence into the reference
sequence:

WER =
ni + nd + ns

L
, (15)

where ni, nd, and ns are the number of operations for
insertion, deletion, and substitution, respectively. L is the
length of the reference sequence. Besides, we calculate the
ratio of correct words to the reference words in the predicted
sentence, denoted as Acc-w.

We also adopt semantics evaluation metrics widely used
in NLP, NMT, and image description evaluation, i.e.,
BLEU [68], CIDEr [69], ROUGE-L [70], and METEOR [71].
BLEU (Bilingual evaluation understudy) is one of the most
popular metrics, which computes the modified precision metric
using n-grams to measure the quality of machine-generated
text. CIDEr (Consensus-based Image Description Evaluation)
is a novel consensus-based evaluation protocol, which mea-
sures the similarity of a sentence to the majority, or the
consensus of how most people describe. ROUGE-L (Recall-
Oriented Understudy for Gisting Evaluation-LCS) measures
sentence-level structure similarity naturally and identifies the
longest co-occurring in sequence n-grams automatically. ME-
TEOR (Metric for Evaluation of Translation with Explicit OR-

dering) is based on the harmonic mean of unigram precision
and recall, with recall weighted higher than precision.

B. Implementation Details

In our experiment, data augmentation is crucial for relieving
over-fitting. We first randomly crop the video at the same
spatial location across all frames, perform random horizontal
flipping spatially, and temporally discard 20% of frames at
random. The input size is 224×224. Besides, the hidden states
of the 2-layer BLSTM are all set to 1024.

Following the previous methods [6], [7], we use a staged op-
timization strategy. First, the employed GoogLeNet backbone
is pre-trained on ImageNet [72]. At the end-to-end training
stage, the whole framework is trained end-to-end using the loss
in Equation (13) for each language branch. During this stage,
we use Adam optimizer with the learning rate of 5×10−5 and
batch size of 3.

In continuous SLR, it is crucial for the visual encoder to
produce discriminative feature representation. In the first stage,
the CTC objective loss has limited contribution to low layers
of visual encoder due to the vanishing gradient problem. Thus
the visual encoder may not be fully optimized. To alleviate
this issue, we explicitly train the visual encoder using the
common classification method, which introduces the second
refinement stage. We adopt the pre-trained weight from the
first stage to decode pseudo labels for each clip using the
method introduced in Section III-D. Then we add a fully-
connected layer on top of the visual encoder to predict the
corresponding class of each clip. It is trained with cross-
entropy loss by stochastic gradient descent (SGD) optimizer.

We train the visual encoder for 35 epochs. The initial
learning rate and weight decay are set to 5e-3 and 1e-4,
respectively. The batch size is set to 32 and the clip size is
16. After that, initialized with pre-trained parameters from the
refinement stage, the whole network is trained end-to-end as
stated in the first stage. Through this iterative staged opti-
mization strategy, our visual encoder is well trained and can
cooperate with the sequential module for better performance.
Our entire architecture is implemented by PyTorch and all the
experiments run on NVIDIA Tesla V100.

C. Ablation Study

We perform an ablation study on the effectiveness of each
proposed module in our framework. The ablation study is con-
ducted on two benchmarks, i.e., RWTH-PHOENIX-Weather
and CSL datasets.
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TABLE II: Performance of different basic architectures on the RWTH-PHOENIX-Weather and CSL datasets (the lower the
better). ‘del’ and ‘ins’ denote deletion and insertion, respectively.

Methods
RWTH-PHOENIX-Weather CSL

Dev Test Test
del / ins WER del / ins WER del / ins WER

Individual 7.8 / 3.5 23.8 7.8 / 3.4 24.4 9.8 / 0.0 31.9
Individual (pre-trained) 9.6 / 2.2 23.3 9.7 / 2.0 24.1 9.6 / 0.3 30.2

All shared (basic model a) 8.9 / 3.3 25.2 8.3 / 3.0 25.1 7.3 / 0.5 30.1
Ours (basic model b) 8.4 / 2.6 23.1 8.1 / 2.6 23.9 15.3 / 0.1 26.4
Ours (basic model c) 7.9 / 2.8 22.7 7.6 / 2.7 23.6 15.3 / 0.4 20.2

TABLE III: Ablation study on the effectiveness of our proposed refinement method on the RWTH-PHOENIX-Weather and
CSL datasets (the lower the better).

Methods
Refinement RWTH-PHOENIX-Weather CSL

None CTC-align Max-prob (Ours) Dev Test Test
del / ins WER del / ins WER del / ins WER

Basic model b ✓ 8.4 / 2.6 23.1 8.1 / 2.6 23.9 15.3 / 0.1 26.4
Basic model b ✓ 8.4 / 2.7 22.5 8.0 / 2.3 23.1 14.9 / 0.1 21.5
Basic model b ✓ 8.2 / 2.6 21.0 7.8 / 2.3 21.7 14.9 / 0.3 19.7
Basic model c ✓ 7.9 / 2.8 22.7 7.6 / 2.7 23.6 15.3 / 0.4 20.2
Basic model c ✓ 8.0 / 3.1 22.4 7.0 / 2.8 22.8 11.0 / 0.5 20.1
Basic model c ✓ 7.0 / 2.8 20.4 6.9 / 2.8 21.4 14.2 / 0.4 19.1

Evaluation on basic architecture setting. As shown in
Table II, we compare the effectiveness of different basic
architectures for multilingual SLR. The first row shows the
single lingual backbone training and testing on RWTH-
PHOENIX-Weather and CSL dataset, respectively. ‘Individual
(pre-trained)’ corresponds to the single lingual model first pre-
trained on other datasets and then fine-tuned for each type of
sign language. This setting is designed for fair comparison
with multilingual settings and we pre-train the framework on
other datasets to keep their training data scale consistent. To
be specific, the model is pre-trained on CSL and fine-tuned
on RWTH-PHOENIX-Weather dataset, and vice versa.

The basic model a indicates that we use both a shared visual
encoder and a shared sequential module, corresponding to
Figure 2a. Its WER results are inferior to the ‘Individual (pre-
trained)’ on both benchmarks. This is due to the fact that
visually similar words in different languages may disturb each
other, and thus the shared sequential module may not be fully
optimized for each language. The fourth row shows that an
independent sequential module is utilized for each language,
corresponding to Figure 2b. Benefiting from the enlarged
training corpus data, the shared visual encoder produces robust
feature representations, while separated sequential modules
relieve the disturbance between different languages, which
leads to better performance.

Compared with ‘Ours (basic model b)’, the basic model
c contains a shared sequential module to transfer common
linguistic rules across different languages, corresponding to
Figure 2c. This architecture achieves the best performance on
all benchmarks against others. Specifically, our model achieves
20.2% WER on CSL, contrasting the 30.2% WER of the
Individual (pre-trained), which validates the effectiveness of
our subtly designed framework.

Evaluation on refinement. Table III shows the performance
with the refinement based on our proposed max-probability
alignment and CTC alignment which is proposed in [6], [64].

It can be observed that a notable improvement has been made
on both datasets after refinement, as shown in the third and last
row. Furthermore, our max-probability alignment outperforms
the CTC alignment by a large margin. Besides, the refinement
module can be generally applied to different architectures
proposed in our work. To further demonstrate the effectiveness
of our refinement method, we visualize one sample in each
benchmark dataset, as shown in Figure 6. The sample of
RWTH-PHOENIX-Weather indicates that the baseline method
fails to detect some sign words, such as ‘DANN’ and ‘BISS-
CHEN’. With our architecture added, some missing words
are complemented, but with a wrong substitution of the word
‘AUCH’. Further, this wrong substitution can be corrected with
refinement. A similar phenomenon is also observed in the
example of CSL dataset. The baseline method misses several
keywords, such as ‘sister’ and ‘nurse’, and our method fails to
offer any complement, if no refinement is added. After further
refinement introduced, however, all the mistakes get corrected.
Such phenomenon can be explained as follows. With more data
engaged in the training process, the visual encoder generates
more robust feature representation. Besides, similar visual
patterns are able to get enhanced among different languages,
which facilitates the entire architecture’s capability to capture
missing words. With our proposed alignment method, the map-
pings between visual patterns and words are further refined,
leading to the correction of wrong words in the sentence.

D. Comparison with the State-of-the-art Methods

We compare our approach with the existing state-of-the-
art methods on three public datasets, i.e., RWTH-PHOENIX-
Weather, CSL and GSL-SD. All 3 languages are involved
during training, including German, Chinese and Greek SL.

Evaluation on RWTH-PHOENIX-Weather. As shown
in Table IV, we compare our approach with other methods
on RWTH-PHOENIX-Weather. CMLLR [22] and 1-Million-
Hand [73] utilize hand-crafted features with a traditional
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(a) An example on the the dev set of RWTH-PHOENIX-Weather dataset.
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113
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0.0%我 同学 的 妹妹 是 护士

我 同学 的 妹妹 是 警察 (SUB)

我 同学 的 (DEL) 是 警察 (SUB)

(b) An example on the the test set of CSL dataset.

Fig. 6: Qualitative illustrations of the effectiveness of the refinement method on two benchmark datasets. In each sub-figure,
the first row shows the corresponding video sequences. The following three rows indicate the CTC predictions of the baseline
method, our method without refinement and ours with refinement, respectively. The last three rows show the final generated
sentence in the same orders as the CTC predictions. Note that the red boxes denote the failure cases. ‘SUB’ and ‘DEL’ indicate
substitution and deletion, respectively.

HMM-based model. In SubUNets [41] and CNN-LSTM-
HMM [4], hand patches are used as a cue to assist the full-
frame RGB modality. However, it leads to doubled model
sizes. FCN [46] utilizes fully convolutional networks, while
in [74], it utilizes Transformer as the backbone. In our setting,
we only utilize the full frame and our method achieves 20.3%
and 20.9% WER on the dev and test set, which is a new state-
of-the-art result on RWTH-PHOENIX-Weather.

Evaluation on CSL. As discussed in the works [42], [63],
CSL dataset originally provides 2 splits for evaluation. For
Split II, it is an unseen sentence setting: the training and
testing sets share the same signers but without overlap of
the same sentences. Generally, it is much more difficult for
SLR on unseen sentences (Split II). Therefore, we evaluate
our approach on this split, as shown in Table V. We compare
our method with LSTM&CTC [47], S2VT [79], HLSTM [63],
HRF [80], IAN [7], SL-Transformer [74] and CMA [45].
HLSTM proposes a hierarchical-LSTM (HLSTM) encoder-

decoder model with visual content and word embedding. It
also utilizes the temporal attention mechanism to balance
the intrinsic relationship. In CMA, it exhibits a significant
improvement as pseudo-video-text pairs are introduced. Even
so, our method still largely outperforms CMA by 5.4% on
WER. Besides, the results of the precision and semantic
metrics of our method also show consistent improvement over
the best competitor, e.g., 4.8% improvement on Acc-w, etc.
With lingual characteristics learned from different languages,
the performance on the dataset which has a relatively small
vocabulary size gets boosted more substantially.

Evaluation on GSL-SD. As shown in Table VI,
DNF (RGB) [6] utilizes the RGB full frame as the input
modality, which is our baseline method. Our method achieves
32.7% and 33.5% WER on the dev and test set, respectively,
which is new state-of-the-art performance. These experimental
results demonstrate the generalization capability of our method
among different sign languages.
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TABLE IV: Evaluation on RWTH-PHOENIX-Weather (the lower the better).

Methods Data Dev Test
Full Hand Face Pose del / ins WER del / ins WER

CMLLR [22] ✓ ✓ ✓ 21.8 / 3.9 55.0 20.3 / 4.5 53.0
1-Million-Hand [73] ✓ ✓ ✓ 16.3 / 4.6 47.1 15.2 / 4.6 45.1
CNN-Hybrid [75] ✓ 12.6 / 5.1 38.3 11.1 / 5.7 38.8
SubUNets [41] ✓ ✓ 14.6 / 4.0 40.8 14.3 / 4.0 40.7
Re-sign [40] ✓ - 27.1 - 26.8
RCNN [9] ✓ 13.7/7.3 39.4 12.2/7.5 38.7
Hybrid CNN-HMM [10] ✓ 31.6 32.5
Dilated [43] ✓ 8.3 / 4.8 38.0 7.6 / 4.8 37.3
CTF [76] ✓ 12.8 / 5.2 37.9 11.9 / 5.6 37.8
CNN-LSTM-HMM [4] ✓ ✓ - 26.0 - 26.0
IAN [7] ✓ 12.9 / 2.6 37.1 13.0 / 2.5 36.7
DNF (RGB) [6] ✓ 7.8 / 3.5 23.8 7.8 / 3.4 24.4
SMC [65] ✓ ✓ ✓ ✓ 7.8 / 3.8 22.7 7.4 / 3.5 22.4
FCN [46] ✓ - 23.7 - 23.9
CMA [45] ✓ 7.3 / 2.7 21.3 7.3 / 2.4 21.9
SFLM [77] ✓ 10.3 / 4.1 24.9 10.4 / 3.6 25.3
SL-Transformer [74] ✓ 5.8 / 4.7 23.1 5.4 / 4.6 24.2
CMJLS [31] ✓ - 23.9 - 24.0
VAC [78] ✓ 7.9 / 2.5 21.2 8.4 / 2.6 22.3
Ours ✓ 6.4 / 2.9 20.3 6.2 / 2.8 20.9

TABLE V: Evaluation on CSL dataset according to common semantic evaluation metrics. (↑ indicates the higher the better,
while ↓ indicates the lower the better.)

Methods Acc-w ↑ BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ CIDEr ↑ ROUGE-L ↑ METEOR ↑ WER ↓
LSTM&CTC [47], [48] 0.332 0.343 0.124 0.039 0.241 0.362 0.111 0.757
S2VT [79] 0.457 0.466 0.258 0.135 0.479 0.461 0.189 0.670
S2VT (3-layer) [79] 0.461 0.475 0.265 0.145 0.477 0.465 0.186 0.652
HLSTM (SYS sampling) [63] 0.459 0.463 0.293 0.185 0.476 0.462 0.173 0.630
HLSTM [63] 0.482 0.487 0.315 0.195 0.561 0.481 0.193 0.662
HLSTM-attn [63] 0.506 0.508 0.330 0.207 0.605 0.503 0.205 0.641
HRF-Fusion [80] 0.445 0.450 0.238 0.127 0.398 0.449 0.171 0.672
IAN [7] 0.670 0.724 - - 3.946 0.716 0.383 0.327
SL-Transformer [74] 0.661 0.694 0.504 0.398 1.992 0.702 0.331 0.335
CMA [45] 0.747 0.784 - - 3.006 0.782 0.390 0.245
Ours 0.809 0.852 0.779 0.743 5.799 0.843 0.481 0.181

TABLE VI: Evaluation on GSL-SD (the lower the better).

Methods Dev Test
del / ins WER del / ins WER

SubUNets [29] - 52.8 - 54.3
IAN [7] - 61.9 - 68.5
DNF (RGB) [6] - 43.5 - 48.5
Ours 12.5 / 2.2 32.7 12.5 / 2.7 33.5

V. CONCLUSION & FUTURE WORK

Current solutions to sign language recognition (SLR) treat
each language independently and learn separate SLR models.
To the best of our knowledge, we are the first to explore
the multilingual sign language recognition topic. To this end,
we propose a unified framework, which consists of a shared
visual encoder, and an independent sequential module for
each language together with a shared sequential module. The
shared visual encoder and shared sequential module benefit
from large training data of different languages and are able
to promote each independent module for its corresponding
language task. Besides, a max-probability decoding scheme is
proposed to align the videos and sign glosses for further visual
encoder refinement. Extensive experiments have validated the
effectiveness of our method, which achieves new state-of-the-
art performances on both three challenging benchmarks, i.e.,

RWTH-PHOENIX-Weather, CSL and GSL-SD datasets.
The multilingual problem is a new research topic of great

importance to the community. We argue that multilingual sign
languages share common language-agnostic visual patterns.
In other words, it is beneficial to explore the collaborative
representation learning paradigm under this insight. There are
several potential directions for further research. Firstly, since
annotated sign data requires expert knowledge, the data scale
of the current sign corpus is limited. It is meaningful to design
a self-supervised learning framework by leveraging a large
amount of multilingual sign data without annotation. With this
kind of data involved, the recognition performance is expected
to further boost. Secondly, it is worth exploring more advanced
unified models which can automatically recognize the input
sign video to its corresponding sign language. Besides, it is
also desirable to study the interpretability, which is conducive
to the analysis of the correlation among multilingual data,
such as the common language-agnostic and language-specific
components in different languages, which will help the sign
community understand sign language better.
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