arXiv:2511.14349v1 [cs.CV] 18 Nov 2025

Applied
Research
Center

4 )

ARC-Chapter: Structuring Hour-Long Videos into
Navigable Chapters and Hierarchical Summaries
Junfu Pu*, Teng Wang*, Yixiao Ge', Yuying Ge, Chen Li, Ying Shan

ARC Lab, Tencent PCG

*Core contributors, "Project lead

The proliferation of hour-long videos (e.g., lectures, podcasts, documentaries) has intensified demand
for efficient content structuring. However, existing approaches are constrained by small-scale training
with annotations that are typical short and coarse, restricting generalization to nuanced transitions
in long videos. We introduce ARC-Chapter, the first large-scale video chaptering model trained on
over million-level long video chapters, featuring bilingual, temporally grounded, and hierarchical
chapter annotations. To achieve this goal, we curated a bilingual English-Chinese chapter dataset
via a structured pipeline that unifies ASR transcripts, scene texts, visual captions into multi-level
annotations, from short title to long summaries. We demonstrate clear performance improvements with
data scaling, both in data volume and label intensity. Moreover, we design a new evaluation metric
termed GRACE, which incorporates many-to-one segment overlaps and semantic similarity, better
reflecting real-world chaptering flexibility. Extensive experiments demonstrate that ARC-Chapter
establishes a new state-of-the-art by a significant margin, outperforming the previous best by 14.0% in
F1 score and 11.3% in SODA score. Moreover, ARC-Chapter shows excellent transferability, improving
the state-of-the-art on downstream tasks like dense video captioning on YouCook2.
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1 Introduction

The exponential proliferation of long-form video content, including educational lectures, vlogs, live streams, and
meeting recordings—poses significant challenges for automatic content understanding. Video chaptering [35; 44]
has emerged as a promising solution, segmenting videos into navigable and semantically coherent chapters.
This enables efficient content retrieval, summarization, and enhanced user interaction, which are critical for
managing and consuming large-scale video data.

Despite notable advances in segmenting short videos (usually within five minutes) for tasks such as action
segmentation [8; 22; 27; 32; 39|, temporal event localization [16; 54|, and dense video captioning [19; 38; 46],
the structuring of hour-long videos remains a formidable challenge. First, modeling sophisticated semantics
across multimodal inputs, including visual and audio streams—over extended temporal horizons requires robust
and scalable architectures. Second, the scarcity of large-scale datasets with fine-grained annotations hinders
the development and evaluation of effective chaptering models. Third, existing evaluation metrics [10; 19]
often fail to capture the semantic granularity of chapter boundaries, leading to suboptimal matching and
similarity scoring between predicted and ground-truth segments [10].

In this technical report, we introduce ARC-Chapter, a comprehensive framework designed to address the unique
challenges of long-form video structuring. As illustrated in Fig. 1, ARC-Chapter enables the segmentation of
lengthy videos into navigable chapters and generates hierarchical summaries that capture both coarse and
fine-grained content structure. Our work makes three primary contributions. First, we advance the scalability
of video chaptering by developing the first large-scale model trained on one million long videos, totaling
400,000 hours of content. This dataset is fifty times larger than those used in previous studies [35], allowing
our model to generalize across diverse video domains and formats. Second, we propose a semi-automatic
annotation pipeline for hierarchical summaries, which leverages easily accessible human-annotated coarse labels.
This pipeline integrates automatic speech recognition (ASR) derived transcripts with timestamped visual
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Figure 1 Anillustration of the capabilities of our video chaptering model. Given a video, our model is able to generate
timestamped chapters with three-level structured output: 1) Short Title - a concise label summarizing each chapter; 2)
Structural Chapter - a detailed, structured annotation for each chapter, including a rewritten comprehensive title, an
abstract summarizing the core content, and an introduction describing key details and highlights; and 3) Timestamp-
Aligned Video Description - fine-grained descriptions aligned with precise temporal boundaries. This hierarchical structure
facilitates an efficient and precise understanding of video content.

elements, enabling a holistic and multimodal understanding of video content. Third, we introduce GRACE, a
novel granularity-robust evaluation metric designed to address the semantic misalignment issues prevalent in
existing chaptering benchmarks. GRACE provides a more accurate assessment of chapter boundary quality
by accounting for varying levels of semantic granularity.

Our extensive experiments demonstrate the effectiveness of ARC-Chapter, which establishes a new state-
of-the-art on both Chinese and English long-form video chaptering benchmarks. Specifically, ARC-Chapter
substantially outperforms previous methods on the VidChapters-7M test sets (e.g., CIDEr: 100.9—186.6; F1:
45.3—59.3; SODA: 19.3—30.6). We validate the importance of multimodality, showing that our full model
surpasses video-only and audio-only variants by 7.7 and 5.3 points on SODA, respectively. Furthermore,
pretraining on our large-scale dataset significantly enhances transferability, evidenced by notable performance
gains on downstream tasks like YouCook2 and ActivityNet Captions. Crucially, our work is the first to identify
a clear scaling law in video chaptering: model performance consistently improves with increased training data
and label density. This finding refutes previous observations that performance saturates on smaller datasets
(~20k samples) [35] and suggests a promising direction for future research.

The remainder of this report is structured as follows: Section 2 reviews related works; Section 3 describes
the dataset and annotation pipeline; Section 4 details our methodology and model architecture; Section 5
presents experimental results and analysis; Section 6 concludes.

2 Related Works

Global Video Understanding. Early video understanding [1; 7; 13; 23; 26; 33; 37; 41; 42; 49; 52; 53; 57] research
primarily targeted global comprehension tasks, such as video question answering, video captioning, and video
classification. These methods treat entire videos as holistic units, extracting global representations to predict
semantic labels or generate summaries. While effective for short videos, they often fail to capture complex
temporal dynamics and hierarchical structures of long-form content [24; 30].
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Figure 2 Overview of our automatic video annotation pipeline for hierarchical chaptering and summarization. We
extract visual captions (OCR included) from sampled video frames and ASR transcripts from audio. These outputs
are temporally aligned and interleaved into a unified multimodal transcript. This transcript, together with original
chapter markers, is processed by an LLM to produce structured chapters and timestamp-aligned video descriptions.

Temporal Segmentation for Short Videos. To address the limitations of global approaches, recent works [14;
15; 17; 28; 30; 40; 47; 50; 56] have shifted towards modeling the temporal structure of videos. Datasets
like ActivityNet Captions [19], Charades-STA [11], YouCook2 [55] and Breakfast [21] provide timestamped
event annotations, enabling tasks such as temporal event localization, action segmentation, and dense video
captioning. These approaches move beyond global representations to identify and describe fine-grained events
and local temporal dependencies. However, most temporally-structured datasets [25; 48| are limited to short
clips, typically under several minutes, and thus do not capture the challenges of ultra-long videos found in
lectures, podcasts, or livestreams. The lack of large-scale, long-duration datasets with fine-grained temporal
annotations remains a major bottleneck.

Long-Form Video Structuring. A few efforts [35; 45] have explored the structuring of hour-long videos. The
VidChapters-7M dataset [45] provides a large-scale benchmark for video chaptering, with millions of videos
and annotated chapter boundaries, better reflecting real-world scenarios such as vlogs, podcasts, and meetings
where long-term temporal reasoning is essential.

Despite these advances, significant challenges remain. Existing chaptering models often rely on limited
modalities, such as automatic speech recognition, are trained on small-scale datasets, and produce coarse,
uninformative descriptions, which limits their scalability across diverse video domains. To address these issues,
we propose a scalable, multimodal framework for long-form video chaptering, supported by a large-scale
dataset with detailed chapter descriptions.

3 Data Collection and Annotation

A significant challenge in developing strong video chaptering models is the scarcity of publicly available
datasets with detailed, multi-level annotations. Existing datasets typically provide only sparse labels, such as
video-level categories for video classification or coarse temporal segments with brief titles such as VidChapters-
7M. To address this limitation and to facilitate research on hierarchical video chaptering and summarization,
we introduce a new, richly annotated video chaptering dataset. This section details our data curation and
annotation pipeline.

3.1 Data Curation

One of the key contributions of our work is the introduction of a new large-scale dataset, named VidAtlas,
which is designed for the task of hierarchical video chaptering and summarization. Our primary goal is to
construct a dataset that not only provides accurate chapter boundaries but also offers dense, multi-granularity
textual descriptions for both individual chapters and the entire video.
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Data Sourcing. We begin by sourcing videos from the video platform. The primary selection criterion is the
presence of author-provided chapter markers. These markers, which include the start/end timestamps and a
short title for each chapter, are manually defined by the video uploader. This approach provides us with a
highly accurate human-verified ground truth for the temporal segmentation of videos, which is a significant
foundation for our subsequent annotation efforts. The collected videos, which are long, well-structured, and
information-dense, are ideal candidates for video chaptering.

Filtering and Refinement. Starting with this initial collection, we apply several filtering criteria to guarantee
the quality and diversity of our dataset for video understanding and chaptering. First, we retain videos whose
durations lie between 2 minutes and 3 hours. This range excludes trivial short clips, which are unnecessary
for chaptering, as well as overly long videos, which are often unstructured (e.g., live streams) and difficult to
process due to the context-length limitations of our model. Second, we curate videos across a wide range of
domains, including educational lectures, DIY tutorials, reviews & unboxings, interviews & podcasts, webinars
& presentations, gaming & music albums, fitness & cooking and documentaries. This wide distribution of
domains ensures that the dataset is not biased towards any specific genre and supports the development of
more generalizable models.

Video Duration Distribution

\
\
\
\

Others
(8.00%)

3
&
o

||IIIII-‘-_I Eﬂa%
& o 08 o o o /
(a) Duration distribution (b) Categories in dataset

Figure 3 Dataset statistics: (a) Distribution of video durations (top) and chapter durations (bottom) in the VidAtlas
dataset. (b) Distribution of video topics in VidAtlas.

3.2 Hierarchical Annotation

To generate high-quality video chaptering annotations, we design an automated annotation pipeline that
leverages both multimodal content extraction and large language model (LLM)-based reasoning based on the
videos with user-provided chapter makers, i.e. timestamps and brief title of each chapter. The illustration of
our annotation pipeline is shown in Fig. 2.

Multimodal Information Extraction. Considering efficiency and cost, we avoid directly using multimodal large
language models (MLLMs) for video annotation. Instead, we first extract multimodal information from video
frames and audio, integrate this content, and then feed the result into text-only LLM for reasoning and
annotation. Specifically, we use Whisper-v3 [29] to transcribe speech into text, segmented into sentences
with the corresponding timestamps. In parallel, we uniformly sample video frames with a fixed sampling
frame rate and employ Qwen2.5-VL-7B [4] to extract visual captions and on-screen text (OCR) for better
understanding of the video content. Subsequently, the visual captions and ASR transcripts are temporally
aligned based on their respective timestamps. This process allows us to interleave the textual content from
both modalities into a unified chronologically ordered sequence. This multimodal transcript, together with
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the original user-provided chapter timestamps and short titles, is fed into LLM for reasoning and structural
segmentation.

LLM Reasoning and Chaptering. The LLM is prompted to analyze the transcript and reorganize the content
into a structured set of chapters, each containing a comprehensive title, an abstract, an introduction, and
precise temporal boundaries. Following this, we perform a verification step on the LLM’s output to ensure
that the generated chapter boundaries strictly adhere to the original timestamps. Building upon the verified
structured chapter information, we further prompt the LLM to produce a comprehensive, timestamped
narrative description for the entire video. Through this annotation pipeline, we can efficiently obtain accurate,
multi-level video chapter segmentation and descriptive annotations. The resulting annotations form a dense,
hierarchically organized representation of long-form videos, supporting a wide range of research tasks in video
understanding, temporal reasoning, chaptering, and summarization.

3.3 Dataset Statistics

We summarize the key statistics of our VidAtlas dataset and highlight the properties that make it suited
for research on video chaptering and summarization. The dataset comprises 410k+ videos with an average
duration of 16.8 minutes, amounting to more than 115k hours of diverse content. On average, each video
is segmented into 5.5 chapters, with an average chapter duration of 182 seconds (approximately 3 minutes).
Fig. 3a provides a detailed statistic of the duration distributions for both videos and chapters. Our dataset
contains a wide spectrum of video and chapter lengths to ensure models are trained on a diverse temporal
structures. This comprehensive video/chapter length distribution makes the models exposed to a variety of
content length, from concise segments to hour-long narratives, forcing models to resolve both rapid topic shifts
and sustained thematic segments. To mitigate genre bias, VidAtlas covers a wide array of topics, including
16 primary categories with over 100 subcategories, as shown in Fig. 3b. The categories of VidAtlas include
Games, Knowledge, Technology, Music, Life, Animation, and Sports, together with other variety that captures
long-tail topics. Videos in these categories are typically well-structured and information-dense, making them
ideal for chaptering.

4 ARC-Chapter

4.1 Overall Framework

We leverage Qwen2.5-VL-7B [5] as our base model, enhancing its capabilities to process and structure video
content into chapters. The architecture of our model is illustrated in Fig. 4. The model unifies three inputs:
1) an instruction prompt that specifies the task of input modalities and output schema. 2) a sequence of
sampled video frames that provide appearance, layout and on-screen text (including subtitles which often
align with the ASR transcript), and 3) a timestamp-aligned ASR transcript from audio. While both the video
and ASR transcript inputs are optional, the model requires at least one modality to be provided. Frames
are embedded with Qwen2.5-VL vision encoder and translated into visual tokens, while ASR transcript is
tokenized as plain text with explicit timestamps. The vision encoder is kept frozen and the language model is
instruction tuned on VidAtlas to specialize in video chaptering.

Prompt Design. The model’s behavior is guided by carefully designed prompts that specify the desired task
and output format. To handle the diverse requirements of different inputs and outputs of the model, we
design a set of 18 distinct prompt templates. These prompts are constructed based on three axes: language in
source video, input modality, and desired output format.

e Language: We support English and Chinese to match the language of the source video.

e Input Modality: The prompt specifies whether the model should rely on ASR~only, video-only, or both
video and ASR inputs. This allows for ablation studies and adaptation to scenarios where one modality
may be absent or noisy.
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Figure 4 Overview of the model architecture for video chaptering. The model inputs include a task-specific prompt,
sampled video frames, and timestamped ASR transcripts. Video frames are processed with a frozen vision encoder.
The resulting visual features, along with the tokenized prompt and ASR text, are fed into a trainable multimodal large
language model (MLLM). Based on the inputs, the model is able to generate chapters in various formats, including
timestamped concise title, detailed structural chapters, or comprehensive video description with timestamps.

e Output Format: We define three distinct output structures: (a) Short Titles for concise chapter markers,
(b) Structured Chapters that include a title, abstract, and introduction for each chapter, and (c) Video
Descriptions that provide a dense, timestamp-aligned summary of the entire video.

Video Input. To balance temporal coverage and context budget, we follow the setup of Qwen2.5-VL and cap
the visual stream at 768 frames sampled at up to 1 fps. That is to say, videos shorter than 12.8 minutes are
sampled with 1 fps, while longer videos are uniformly down-sampled to 768 frames with a lower fps. The
sampling strategy retains coarse global coverage for hour-long content, ensuring sufficient representation to
capture the high-level semantic shifts necessary for the chaptering task. Since the model context length is
shared across modalities, we dynamically adjust the per-frame token allowance according to the input of
ASR transcript. For video-only inputs we use a higher frame resolution (higher token budget per frame)
so that small text (OCR and subtitles) and fine-grained visual cues are preserved. When ASR is provided
alongside video, we reduce frame resolution (thus reducing the number of visual tokens) so that the combined
input of visual tokens and ASR text fits the maximum context length of MLLM. This dynamic allocation is
implemented by adjusting image scaling and patch-tokenization parameters at preprocessing time. Moreover,
to enhance temporal awareness, we randomly overlay timestamps onto the video frames, making the model
more sensitive to the video timeline.

ASRInput. Although integrating raw audio features or learned audio embeddings from pretrained ASR models
(e.g.Whisper [29]) is attractive, it presents severe scalability challenges for long-form video. For example, while
Whisper-style audio encoder produces 50 audio tokens per second, a 60-minute audio therefore produces 180k
tokens, far exceeding feasible LLM context budgets without aggressive compression or specialized audio-to-token
aggregation. Furthermore, synchronizing fixed-rate audio features with dynamically sampled video frames
poses an additional alignment problem. To address these practical constraints, we opt to use ASR transcripts
as a highly effective proxy for the audio modality. Text is significantly more information-dense. Therefore,
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the ASR transcript of a long audio segment occupies far fewer tokens than its raw feature representation.
This makes processing hour-long videos computationally feasible for both training and inference. Although
such a paradigm introduces an extra step for offline ASR transcription, we believe that trading a modest
amount of offline processing time for the ability to handle long-form audio under strict context-length budgets
is worthwhile. In our implementation, we use Whisper-large-v3 [29] to generate timestamped ASR transcripts.
The model provides sentence-level segments with corresponding start timestamps. We formulate the ASR
text and timestamp of each segment as start time (hh:mm:ss): <ASR text>. The normalized ASR transcript
is then passed to the model either alone (ASR-only) or together with visual tokens (ASR+Video), providing
dense semantic information that is particularly useful for temporal boundary detection and chaptering.

4.2 Training Strategy

Training Objective. 'We perform supervised instruction tuning on VidAtlas and VidChapter-7M using all
prompt templates. The training objective is the standard autoregressive next-token prediction loss over the
target sequence. Given a multimodal input sequence consisting of a prompt Xprompt, video frames Xyideo,
and an ASR transcript X,s (video stream Xyigeo and ASR streams X, are optional), the model is trained
to maximize the log-likelihood of the target output sequence Y = (y1,y2, ..., yn) (€.g., a list of chapter titles, a
structured chapter object, or a timestamped description):

n
L=- Z IOgP (yl | Y<n, Xprompt7 Xvideoa Xasr) )
i=1
where y.; represents the preceding ground-truth tokens. During training, the vision encoder is frozen to
enable a larger context length, while all parameters of the large language model are optimized with the
training objective.

Adaptive Modality Dropping. To enable a single model to perform well under various deployment conditions,
we adopt an adaptive modality dropping strategy during training. For each training sample, we randomly
configure the input with a certain probability to be one of three types: 1) Video + ASR: Both modalities are
provided to the model. 2) Video-only: The ASR transcript is omitted, forcing the model to rely solely on
visual information. and 3) ASR-only: The video frames are omitted, requiring the model to understand the
content based on the transcript alone. This strategy prevents the model from becoming overly reliant on a
single modality and ensures it develops a comprehensive understanding from all available input modalities.
Consequently, a single trained model can be deployed to handle videos under various conditions during
inference (whether only a video is available, only transcript is provided, or both are present), without requiring
specialized models for each scenario.

4.3 Evaluation Metrics

Evaluation metrics can be divided into two aspects: (1) the accuracy of segmentation (e.g., Precision, Recall,
and tIOU [20]), and (2) joint metrics that assess both segmentation and chapter captioning (e.g., CIDEr [20],
SODA [10]). However, we observe that the primary metrics such as SODA, originally developed for dense video
captioning, are not well-suited for the video chaptering task. While SODA enforces a one-to-one matching
between predicted and ground-truth events to suppress redundancy in overlapping event detection, video
chaptering requires segmenting videos into sequential, non-overlapping chapters. Furthermore, chaptering
annotations often exhibit granularity ambiguity: different annotators may segment the same video at varying
levels of detail—some may annotate coarse-grained chapters (e.g., by day in a travel vlog), while others may
provide fine-grained chapters (e.g., by each visited site within a day). This results in multiple valid annotation
granularities for the same content.

To address these challenges, we propose GRACE, a metric tailored for video chaptering. It introduces a
many-to-one (set-to-one) matching paradigm, allowing each ground-truth (predicted) chapter to be matched
with a set of predicted (ground-truth) chapters. As illustrated in Fig. 5, for each ground-truth chapter, GRACE
evaluates the temporal overlap and semantic similarity between the chapter and its matched prediction set,
using established language similarity metrics (e.g., BERTscore [51]) for textual comparison. Specifically, we
aim to find a best many-to-one mapping M which splits both ground-truth set G and prediction set P into

several pairs of groups {(P;, G;)}X ,, followed by group-based similarity calculation:
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(a) One-to-One Matching: SODA (b) Many-to-One Matching: GRACE
Pred p1 P2 p3 Pred p1 p2 p3
GT O 92 g3 GT O 92 g3
SODA = \Sim(p1, g1) + A\2Sim(p3, g3) GRACE = ¢1Sim(p1, g1 U g2) + p2Sim(p2 U ps, g3)

Figure 5 Comparison of one-to-one (SODA) and many-to-one (GRACE) matching strategies. The one-to-one matching can
fail to account for important events like p2 and g2, whereas the many-to-one strategy considers all predicted and
ground-truth events for a more robust, overall assessment.

GRACE = > ©(P;,G;) - BERTscore(P;, G;) (1)
(Pi,Gi)EM(P,G)
1
¢(P;, Gy) = I0U(p. 9) (2)
| Bil|Gil pegegi
s.t. Pz' N Pj = @, U(PZ) = P, Gz N Gj = @, U(Gz) = G, min(|Pi|, |G1|) =1 (3)

where P; and G; epresent groups of chapters. When calculating the BERTScore between two groups, we first
concatenate all captions within each group into a single sentence, then compute the BERTScore between the
two merged sentences. We adopt the dynamic time warping algorithm (DTW) [6; 31] to achieve the optimal
matching M (P, G), with IOU between two chapters being used as the matching criteria.

GRACE provides a more accurate and human-aligned assessment of chaptering models. This design confers
several advantages: (1) robustness to annotation granularity, enabling fair evaluation across diverse annotation
styles; (2) improved semantic fidelity, rewarding models that capture the full scope of ground-truth chapters;
and (3) closer alignment with human judgment of chapter boundaries and content.

4.4 Reinforcement Learning with GRPO

While supervised fine-tuning (SFT) achieves strong performance, the standard cross-entropy loss does not
directly optimize for the primary objective of video chaptering: temporal accuracy. To further enhance the
model’s temporal localization capabilities, we introduce a subsequent reinforcement learning phase using the
GRPO algorithm [12].

The core of this phase is a reward function designed to directly incentivize precise chapter boundary prediction.
We leverage our proposed GRACE metric, which holistically evaluates both temporal alignment and semantic
content. However, to specifically sharpen the model’s ability to predict accurate timestamps of segmented
chapters, we formulate a simplified, temporal-only reward by omitting the semantic BERTscore component
from Equation (1). For a given ground-truth chapter set G and a model-generated set P, the reward R is
calculated by summing the temporal alignment scores ¢ over the optimal matching M (P, G) found via DTW:

R= > o(P;, Gy). (4)
(Pi,G:)eM(P,G)
This reward directly reflects the quality of the temporal segmentation, providing a clear and targeted
optimization objective.

Due to the significant context length required for multimodal inputs, and to specifically bolster the model’s
ability to reason from visual cues, we conduct this RL training phase using only the video modality. We select
a diverse subset of 90k videos from both Chinese and English SFT data, ensuring that training samples cover
all three output formats: short titles, structural chapters, and timestamped video description. We initialize
the model with the weights from our best-performing SFT model and further optimize it using GRPO. The
KL divergence coefficient is set to 0.01 to ensure that the policy does not stray far from the robust language
generation capabilities learned during SFT, thereby balancing temporal refinement with descriptive quality.
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Table 1 Comparison to the state of the art on VidChapters7M-test set: The results of compared methods are evaluated in
the ASR-only setting from Chapter-Llama [35]. We evaluate ARC-Chapter with different input modalities: -vid for
video, -asr for ASR, and -vidasr for both. “Ft.” indicates whether the model is finetuned for chaptering task. tdenotes
LLM-API results reported from Chapter-Llama. Our model, ARC-Cchapter, achieves the best performance across all
metrics and video durations.

Backbone Ft | Short | Medium | Long | All

| FI toU S C | FL toU S C | Fl tU S C | FL thU § C

GPT-40-mini [18]}
GPT-do [18]f
Gemini-2.0-Flash [34]1
Gemini-1.5-Pro [34]f
Vid2Seq [45; 46]
Llama 3.1-8B [9]
Vid2Seq [45; 46]
Chapter-Llama [35]
ARCChapter-asr’

ARCChapter-vid
ARCChapter-vidasr

321 645 7.2 424 | 305 623 6.1 30.6 | 280 61.0 6.0 273 | 312 63.6 6.8 37.8
377 680 84 53.8 | 381 688 8.1 51.4 | 36,5 66.2 6.6 34.8 | 376 68.0 8.1 51.0
399 692 120 728 | 438 714 112 703 | 349 662 9.0 51.6 | 40.2 69.3 114 69.7
41.7 70.6 11.7 653 | 43.8 T71.8 11.2 614 | 413 706 101 553 | 422 709 114 63.2
25 286 0.3 0.3 32 297 03 0.4 46 320 0.3 0.5 3.0 293 0.3 0.4
299 634 71 345 | 306 627 54 281 | 266 59.3 3.6 189 | 295 625 6.2 30.7

334 63.7 152 749 | 190 533 75 319 | 16.7 50.8 5.9 284 | 26.7 586 11.6 55.8
455 722 20.2 103.5 | 46.7 723 188 987 | 413 69.2 158 91.2 | 453 718 193 100.9

545 76.7 263 144.1 | 559 77.5 25,1 143.0 | 55.1 77.0 24.8 158.0 | 54.5 76.7 253 144.0
52.6  75.8 26.0 156.8 | 51.4 753 20.6 124.0 | 47.3 723 19.2 119.8 | 50.2 743 229 1383
60.0 80.1 325 1957|592 794 296 1773 |60.2 799 292 190.3 | 593 79.6 30.6 186.6

SN X X% X% X% XX

Table 2 Comparison to the state of the art on VidChapter7M-smI300 with different input modalities. Our method, ARC-
Chapter, demonstrates superior performance on VidChapter-sml300 by effectively integrating both speech and video
information. The modalities of “Embed” and “Caption” in LLaMA and Chapter-LLaMA models play the same role as
“Video” in ARC-Chapter model.

Method Ft.‘ Modalities ‘ Segmentation ‘ Titles
‘Speech Embed. Caption‘ F1 tloU ‘ S C
X X X v 12.6 48.6 1.9 6.4
LLaMA 3.1-8B X v X X 22.7 57.3 4.4 19.7
X v X v 29.9 63.0 6.9 33.7
v v X X 38.5 68.1 13.9 67.3
v X v X 38.4 66.5 3.4 7.3
v X X v 39.1 67.7 5.9 20.2
Chapter-LLaMA 1 v X 404 682 153 74.9
v v X v 42.6 70.6 16.4 82.4
v v v v 44.4 71.5 16.3 84.2
‘ Speech Video ‘ F1 tloU ‘ S C
ARCChapter v v X 56.5 78.1 25.9 148.5
v X v 50.0 74.3 21.6 130.8
v v v 62.4 81.6 30.1 190.7

5 Experiments

In this section, we conduct a series of experiments to thoroughly evaluate our video chaptering model. We
first introduce the evaluation benchmarks, then present the main results and detailed ablation studies.

5.1 Evaluation Benchmark

To comprehensively assess our model’s capabilities in video chaptering, we evaluate it on three distinct
benchmarks covering different languages, scales, and data modalities. The evaluation targets two key
criteria: the precision of temporal boundary localization and semantic relevance of the generated chapter
titles/descriptions. VidChapters7M is a large-scale English chaptering dataset. We use two of its standard
splits for evaluation, i.e., VidChapters7TM-test and VidChapters7M-sml300val. VidChapters7M-test is a
large-scale test set comprising 8.2k samples. For this split, the compared methods are only based on ASR

IFor convenience, "ARC-Chapter" in the main text is abbreviated as "ARCChapter" in all experimental result tables.
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Table 3 Comparison to the state of the art on VidAtlas-test set: “Ft.” indicates whether the model is finetuned for chaptering
task. Modality} specifies which inputs are provided: A for ASR and V for video. 1 denotes LLM-API results. For
API-base models, the video is converted into a textual description, which is then provided as input for LLM.

Backbone Fy, | Modality? | Short | Medium | Long | Al

[A v | F1 tloU 8 C | FI tloU S C | FI toU S C | FI tU S C G
Claude-Sonnet [3]f X | v X |392 698 7.6 388|347 663 65 338 |366 669 58 335|378 686 71 369 1L1
Doubao-1.5-Pro [13]f X | v X | 388 704 74 406 | 358 684 69 383 |361 671 32 174 |37.7 695 67 364 9.8
DeepSeck-R1 [12]+ X |v X |400 711 110 488 | 37.9 695 9.6 452 | 357 668 63 283 | 389 701 100 448 134
Gemini-25-Pro [7]t X | v X | 396 683 81 446 | 306 601 63 374 | 340 602 9.9 540 | 452 732 97 535 149
GPT-4.1 [2]f X |v X |35 686 6.6 346|330 661 58 324 |360 663 59 330 |357 67.7 63 339 -
Qwen3-235B [43]f X |v X |37 67.7 77 369|335 656 67 339 | 266 610 38 187 |344 662 69 334 102
Claude-Sonnet [3]f X | v v | 368 682 7.9 424 |320 652 80 450 | 408 682 168 1104 | 364 675 93 536 132
Doubao-1.5-Pro [13]f X | v v | 395 700 77 433 | 355 676 7.6 452 | 444 69.8 149 1090 | 395 694 88 541 126
DeepSeck-R1 [12]+ X |v v [394 699 105 500 | 380 687 108 549 | 622 803 482 2644 |4L1 705 139 69.7 171
Gemini-2.5-Pro[7]f X |v v | 483 731 98 549 |454 701 118 661 | 548 753 30.6 1725 | 487 728 135 758 198
GPT-4.1 [2]f X |v v/ |33 672 63 342|308 642 62 348 | 439 692 191 1202|358 669 83 479 117
Qwen3-235B [43]f X |v v |248 592 65 319 | 195 529 56 282 |27.5 57.8 160 929 | 241 57.7 78 407 9.6
ARCChapter-asr vo|v X | 573 793 241 1033 | 60.1 80.8 245 1135|632 795 28.1 140.6 | 588 79.7 248 1113 28.0
ARCChapter-vid VX v/ | 571 791 212 915 | 559 782 184 882 | 620 794 279 1378 | 57.6 789 216 981 25.0
ARCChapter-vidasr v |/ v/ | 655 838 285 1292|657 842 290 1400 | 69.6 842 385 1923 | 662 840 302 1415 34.

transcripts, while ARC-Chapter is evaluated with different input modalities. VidChapters7M-sml300val is a
smaller validation set of 300 samples, which includes both the original videos and their corresponding ASR
transcripts. This subset is ideal for fast evaluation and conducting modality ablation studies. To assess
generalization beyond English, we additionally report experimental results on VidAtlas-test, a Chinese test
set with more than 1.5k videos together with ASR transcripts and original videos.

5.2 Comparison with the State of the Art

Performance on VidChapters7M. As shown in Tab. 1, our ARC-Chapter significantly outperforms all existing
methods on VidChapters7M-test benchmark. Our model achieves a new state-of-the-art result in the ASR~only
regime, with an overall F1 score of 54.5, tIoU of 76.7, SODA of 23.5, and a CIDEr of 144.0. This represents
a substantial improvement over the previous SOTA model, Chapter-Llama, with absolute gains of 9.2 in
F1, +4.9 in tIoU, and +6.0 in the SODA score. Notably, the performance gain enlarges as video duration
increases. For long videos (30-60 min), the evaluation metrics of SODA and CIDEr for ARC-Chapter are
remarkably higher than which in Chapter-LLama, demonstrating the superior capability of our model in
processing long videos. Even when compared against powerful general models like GPT-40 and Gemini-1.5-Pro,
which are not finetuned on this task, ARC-Chapter perform much better. The experiments conducted on
VidChapter7M-sml300 show more comparisons for different input modalities, shown in Tab. 2.

PerformanceonVidAtlas. As detailed in Tab. 3, we evaluate our model on the VidAtlas benchmark under three
settings: ASR-only, video-only, and ASR+video. ARC-Chapter consistently establish a new state-of-the-art
across all settings. Our full multimodal model, ARCChapter-vidasr, which leverages both ASR and video
inputs, achieves an overall F1 score of 66.2, tIoU of 84.0, SODA of 30.2, CIDEr of 141.5, and GRACE of
34.1. This marks a significant leap over the strongest LLM, Gemini-2.5-Pro, with an absolute improvement
of +17.5 in F1 score and more than doubling the SODA score (416.7). Furthermore, our single-modality
versions also demonstrate superior performance. The ASR-only model, ARCChapter-asr, achieves an F1 of
58.8, and the video-only model, ARCChapter-vid, scores an F1 of 57.6. From shot-to-long videos, our model
consistently outperforms other models, demonstrating its robustness in handling extended content.

5.3 Transferability

To evaluate transferability, we pre-trained ARC-Chapter on our dataset before fine-tuning and testing it on
the dense video captioning benchmarks, i.e., Youcook2 and ActivityNet Captions. As shown in Table 4, our
model establishes a new state-of-the-art, significantly outperforming all prior MLLM-based methods.

Notably, for event segmentation ability, ARC-Chapter achieves an F1/SODA Score of 37.9/12.5 on YouCook?2,
a substantial improvement over the previous best of 33.5/7.9. This demonstrates that the knowledge acquired
during pre-training effectively transfers and enhances performance on downstream tasks.
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Table 4 Transferability Performance on YouCook2 and ActivityNet Captions [20] for Dense Video Captioning. All methods
use visual modality as inputs without ASR. The Rank(]) column represents the overall performance, calculated as the
arithmetic mean of a method’s rank across all reported metrics (M, S, C, and F1) for that dataset. Some results for
ActivityNet Captions are sourced from [14] and [46]. * indicates zero-shot evaluation. The best results on each dataset
are in bold and the second-best are underlined.

Method YouCook2 ActivityNet Captions

M S C F1 Rank| M S C F1 Rank|
GIT [36] 34 3.1 121 177 7.5 7.8 5.7 29.8 50.6 4.3
ECHR [46] 3.8 - - - 4.0 72 32 147 - 8.6
PDVC [46] 4.7 44 227 - 5.0 8.0 54 290 567 3.8
Vid2Seq [46] 93 79 471 273 2.8 85 58 30.1 524 2.6
cMm? - 53 317 284 47 - - - - -
TimeChat [30] - 3.4 11.0 19.5 8.0 5.7 4.7 190 36.9 8.8
VTimeLLM [17] - - - - - 6.8 5.8 27.6 - 5.8
Momentor™ [28§] - - - - - 4.7 23 149 - 10.7
TRACE [14] - 6.7 355 31.8 3.7 6.4 6.0 259 39.3 5.8
VTG-LLM [15] - 3.6 134 20.6 6.7 59 51 20.7 34.8 8.3
TimeExpert [47] - 72 39.0 335 2.7 70 6.5 284 40.5 4.3
ARC-Chapter 96 125 694 379 10 81 59 354 559 2.0

5.4 Ablation Studies

5.4.1 Scaling Property

We analyze how ARC-Chapter scales with the amount of training data. Concretely, we subsample the
training set at 20%, 40%, 60%, 80%, and 100% and keep the model architecture and prompt templates
fixed. We evaluate three inference modalities, i.e. ASR-only, Video-only, and ASR+Video, on two benchmarks:
VidChapters-7M (sml300val) and a sampled subset of the VidAtlas-testset for efficiency. As illustrated in Fig. 6,
the performance across all metrics (F1, tIOU, SODA, and CIDEr) and input modalities (ASR~only, Video-only,
Video+ASR) demonstrates a clear positive correlation with the amount of training data. Specifically, the
full multimodal model (Video+ASR) consistently achieves the best performance. ARC-Chapter is highly
data-efficient, achieving strong performance with as little as 20% of the training data. Furthermore, it is
data-scalable, continuing to benefit from larger corpora for even better results.

5.4.2 Hierarchical Annotations

A core contribution of our work is the VidAtlas dataset, which features rich, hierarchical annotations. To
validate the effectiveness of this data structure, we evaluate our model’s capability to generate outputs of
varying complexity, from simple Short Title to detailed Structural Info which comprising a title, abstract
and introduction for each chapter. The results are presented in Table 5. From the experimental results, our
model successfully learns to generate these complex, structured outputs, achieving strong performance across
all generated components (title, abstract, introduction) on both VidChapter-sml300 and VidAtlas-testset
benchmarks, particularly when using both video and ASR inputs. This demonstrates a high degree of semantic
understanding.

More importantly, the capability for detailed generation does not come at the cost of performance on the
fundamental chaptering task. When comparing the segmentation metrics (temporal evaluation score F1 and
tIoU) for the Short Title task versus the more demanding Structural Info task, we observe only a negligible
difference. For example, on VidChapter-sml300, the multimodal model achieved an F1 score of 62.4 and a
tIoU of 81.6 for Short Title generation, compared to slightly lower scores of 61.4 and 80.6 for Structural Info
generation. Notably, this small margin represents the largest performance gap observed across all modality
inputs on both benchmarks, indicating that the model can perform complex, multi-part generation in a single
forward pass without compromising its core ability to accurately segment the video. This result strongly
validates our hierarchical annotation strategy, demonstrating that training on such rich data endows the
model with advanced structural reasoning capabilities.
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Figure 6 Data Scaling property of ARC-Chapter. We report the performance on VidChapter (a sampled subset) and
VidAtlas test set with respect to different percentage of training samples.

Table 5 Ablation study on the model’s capability to generate hierarchical annotations. We compare models trained with
Short Title and Structural Info (structured chapters with short title, title, abstract, and introduction) across different
input modalities (A for ASR, and V for Video) on both English (VidChapter-sml300) and Chinese (VidAtlas-testset)
benchmarks. Metrics include F1 and tIoU for boundary quality evaluation, and SODA(S), CIDEr(C), as well as our
proposed GRACE(G) for semantic quality evaluation.

‘ . H Short Title H Structural Info
Dataset Modality

‘ H Segmentation ‘ Short Title H Segmentation ‘ Short Title ‘ Title ‘ Abstract ‘ Intro
‘ AV H F1 tIoU ‘ S C G H F1 tIoU ‘ S C G ‘ S C G ‘ S C G ‘ S C G
VidChapter-smi300 X 56.5 78.1 25.9 1485 33.0 || 54.8 7.1 25.5 1479 325|128 91.2 256 | 123 145 251 | 11.8 11.9 24.6
! (Epn lish) X v 50.0 74.3 21.6  130.8 27.9 | 50.4 74.4 223 1364 28.7| 86 577 198 | 85 64 19.7| 82 52 194
e v /7 62.4 81.6 30.1 190.7 384 | 61.4  80.6 30.8 1945 384 | 146 1072 286 | 13.4 145 274|130 102 27.0
VidAtlas-testset X 58.8 79.7 24.8 111.3 28.0 || 59.1 79.8 25.5 1128 286 | 16.2 101.7 27.0 | 17.5 57.8 31.8 | 16.4 36.0 29.6
! (Chinese) X v 57.6 78.9 21.6  98.1 25.0 || 56.8 8.7 22.0 978 25.1 | 127 674 21.7 | 145 375 273|138 222 252
v o/ 66.2 84.0 30.2 1415 34.1 | 659  83.8 30.8 143.5 34.6 | 185 119.8 30.7 | 19.1 66.3 353 | 182 39.8 33.0

5.4.3 Performance with GRPO

To validate the effectiveness of our GRPO-based reinforcement learning stage, we compare the performance of
our models before (SFT-base) and after (+RL) this optimization. The results, detailed in Table 6, confirm
that GRPO serves as a powerful fine-tuning method for enhancing temporal precision in video chaptering.
From the experimental results, we draw three key conclusions.

First, GRPO directly and consistently improves metrics correlated with temporal segmentation accuracy. As
hypothesized, by optimizing with a reward focused on temporal alignment, we observe a clear performance
boost in F1 and tIoU scores across all configurations. For instance, on the VidAtlas-test set, the GRPO
model with video input achieves a notable gain of +0.8 in F1 and +0.7 in tIoU over its SF'T baseline. This
empirically validates that GRPO effectively sharpens the model’s ability to predict precise chapter boundaries.

Second, we observe a significant degree of cross-modal transferability from the RL training. Notably, despite
the GRPO training being conducted exclusively on the video modality, the temporal localization performance
of the ASR and Video+ASR inputs also improves. The GRPO model with Video+ASR input, for example,
achieves a +1.5 F1 and +1.1 tIoU gain on VidChapter7M-test. This suggests that the optimization is not
merely learning a superficial visual-to-temporal mapping but is refining a more abstract, modality-agnostic
representation of temporal structure within the language model’s parameters.

Finally, these enhancements in temporal precision are achieved without sacrificing semantic quality. Crucially,
although our reward function is agnostic to content, semantic metric such as CIDEr remain highly comparable
to the SFT baseline, and in some cases even improve (e.g., +1.1 CIDEr for video input on VidChapters7M-
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Table 6 Effectiveness of Reinforcement Learning with GRPO. We compare the performance of our models before (SFT)
and after applying reinforcement learning (+RL) with GRPO. The evaluation is conducted on two benchmarks
across different input modalities (A: ASR, V: Video). The results show that GRPO consistently improves temporal
segmentation metrics (F1, tIoU) while maintaining or slightly improving semantic quality metrics (S: SODA, C: CIDEr).
Bold numbers indicate the best performance between the base model and GRPO-enhanced model for each metric.

Method Stage ‘ Modality ‘ VidChapters7M-test ‘ VidAtlas-test
‘ A Vv ‘ F1 tloU S C G ‘ F1 tloU S C G

Base-asr sft v X 54.5 76.7 26.3 144.0 28.9 58.8 79.7 24.8 M3 28.0

GRPO-asr +l |V X | 54.8(+031) 77.2(+0.51) 25.3(-1.0)) 143.7(-0.3)) 28.8 (-0.1}) | 59.6(+0.87) 80.2(+0.51) 24.7(-0.1])  109.9(-1.4})  28.0(1))

Base-vid sft X v 50.2 74.3 22.9 138.3 25.4 57.6 78.9 21.6 98.1 25.0

GRPO-vid +rl X v 50.6(+0.41) 74.8(+0.51) 22.9(1) 139.4(+1.11) 25.4(1) 58.4(+0.81) 79.6(+0.71) 21.9(+0.31)  98.2(+0.11) 25.0(t))
Base-vidasr sft v o/ 59.3 79.6 30.6 186.6 34.3 66.2 84.0 30.2 141.5 34.1
GRPO-vidasr  +rl v 7 60.8(+1.571)  80.7(+1.11)  31.0(+0.41) 190.7(+4.11) 34.6(+0.31) | 66.8(+0.67) 84.3(+0.31) 30.4(+0.21) 141.7(+0.27) 34.4(+0.31)

test.). Composite metrics like SODA and GRACE, which balance segmentation and description, also maintain
their performance or exhibit slight gains. This indicates that the KL-regularized optimization successfully
avoids policy degradation, suggesting a positive effect where more accurate segmentation enables the model to
generate more focused and relevant content. In summary, GRPO acts as a critical fine-tuning step, effectively
sharpening the model’s temporal acuity while preserving its descriptive capabilities.

5.5 AQualitative Visualization

To provide a more intuitive understanding of our model’s capabilities beyond quantitative metrics, we present
qualitative examples on both English and Chinese videos. These visualizations showcase ARC-Chapter’s
ability to generate accurate, coherent, and hierarchically structured outputs in multiple formats and languages.

Fig. 7 illustrates the model’s performance on a challenging English video discussing US debt and the role of
stablecoins. The topic is dense with financial terminology and complex arguments. Our model successfully
navigates this complexity across all output formats. The Short Title accurately segments the video into
logical thematic units, such as "Intro", "Stablecoin Regulation". The Video Description with Timestamp
summarizes the video content for each chapter. More impressively, the Structural Chapters demonstrates
the model’s advanced capability for hierarchical chaptering. The generated title, abstract, and introduction
for each chapter are distinct yet complementary, providing a rich, layered understanding of the content that
mirrors human-authored summaries.

To showcase the multilingual performance of our model, Fig. 8 presents the results for a Chinese video on a
similar topic. The model exhibits a comparable level of understanding and generation quality in Chinese.
The generated Short Titles are precise. The detailed Description and Structural Chapters are fluent and
contextually appropriate. This strong cross-lingual performance underscores the model’s ability to generalize
the learned chaptering and summarization skills, rather than merely memorizing patterns in a single language.

Together, these qualitative examples confirm that ARC-Chapter is not only a powerful chaptering tool but
also a versatile video understanding model capable of producing rich, structured, and multilingual summaries
that are both accurate and useful for end-users.

6 Conclusion

In this report, we introduced ARC-Chapter, a scalable and robust framework for structuring long-form videos
into semantically coherent chapters and hierarchical summaries. ARC-Chapter leverages a large-scale dataset
of millions of long video chapters and employs a semi-automatic annotation pipeline. These innovations
advance the state of the art in video chaptering and summary generation. We also proposed the GRACE
metric, which addresses the limitations of existing evaluation methods by providing a granularity-robust
assessment of chapter boundaries. Experimental results show that ARC-Chapter achieves superior performance
across multiple benchmarks, video durations, and languages. These findings demonstrate the framework’s
effectiveness and generalizability. ARC-Chapter has strong potential to facilitate efficient content navigation,
retrieval, and understanding as long-form video content continues to grow rapidly.
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aa Short Title B3

Intro US Debt Problem Stablecoins & US Bonds Refilling The TGA Stablecoin Regulation Which Cryptos Will Win

a Video Description with Timestamp
( ) The video begins by introducing the pressing issue of the US national debt, highlighting the potential consequences of a default and
the Trump administration's interest in utilizing stablecoins as a potential solution. This sets the stage for a deeper dive into the mechanics of the debt ceiling
and the role stablecoins might play. ( ) Next, the video explains the debt ceiling and its implications, including the possibility of market

stimulation due to reduced government debt issuance. The discussion covers the Federal Reserve's quantitative tightening (QT) program and its impact on
commercial banks' cash reserves, ultimately leading to the exploration of how stablecoins could contribute to refilling the Treasury General Account (TGA).
( ) Moving on, the video defines stablecoins and their connection to US dollar-backed assets. It examines the role of stablecoins like
USDT and USDC in various market segments, such as crypto trading and DeFi, and discusses the potential for significant growth driven by increased
demand from retail investors and PayPal's expanding use of stablecoins. ( ) The video then delves into the potential of stablecoins to
address the TGA funding gap, drawing parallels to the 2023 refill process. It analyzes the potential growth of USDT, USDC, and PayPal's PYUSD,
considering the influence of retail investors, DeFi adoption, and PayPal's merchant network. The analysis suggests that stablecoins could play a crucial role
in meeting the $800 billion funding requirement. ( ) Shifting focus to regulatory developments, the video discusses the two proposed
stablecoin bills in Congress: the Senate's Genius Act and the House's Stable Act. It compares the two bills, highlighting their differing approaches to
regulation, particularly concerning decentralized stablecoins, and emphasizes the importance of swift passage of these regulations. ( )
Finally, the video explores the potential benefits of stablecoins for various cryptocurrencies, focusing on the blockchains where major stablecoins are active.
It examines the growth of USDT, USDC, and PYUSD on platforms like Ethereum, Solana, and others, and discusses the potential impact of XRP's EVM-
compatible sidechain on the XRP ecosystem and the broader crypto market.

g Structural Chapter B3
Video Chapters

Intro
Title: US Debt Bubble & Stablecoins: An Overview
Intro: The video begins by discussing the US national debt exceeding $36 trillion and the potential for a bubble burst. It introduces the idea that stablecoins
could be a solution, noting that stablecoin issuers have already purchased over $60 billion in US debt. The presenter, Nick, sets the stage for explaining the
debt problem, the role of stablecoins, and which cryptocurrencies might benefit.

US Debt Problem
Title: The US Debt Ceiling Crisis and Market Impact
Intro: This section details the US debt ceiling situation, explaining that the US government hit its debt ceiling in January and cannot issue more debt. The
presenter explains that this can paradoxically stimulate the market by reducing debt issuance, leading to more money flowing into other assets. The chapter
highlights the need for the US government to refill the Treasury General Account (TGA) with $800 billion in bonds, which presents a challenge for the market.

Stablecoins & US Debt
Title: Stablecoins as Potential Solutions for US Debt
Intro: This segment focuses on how stablecoins could be a solution to the US debt problem. It explains that stablecoins are crypto tokens pegged to fiat
currencies, often the US dollar, and are backed by US bonds. The presenter notes that stablecoin issuers have purchased over $60 billion in US bonds. The
chapter highlights the potential of stablecoins to help refill the TGA, with the presenter emphasizing the importance of stablecoins in the market.

How Much Stablecoin Growth Needed
Title: Estimating Stablecoin Growth to Refill the TGA
Intro: This section examines how much stablecoin growth is needed to refill the TGA. The presenter uses the 2023 refill as a reference point, noting that the
RRP facility was used to refill the TGA. The presenter then discusses the impact of Quantitative Tightening (QT) on the TGA refill. The presenter estimates
that stablecoins could be the primary buyers of the $800 billion needed to refill the TGA.

Stablecoin Regulations
Title: Stablecoin Regulation and Congressional Action
Intro: This segment covers the stablecoin bills being considered in Congress. The presenter mentions the Genius Act in the Senate and the Stable Act in the
House. The presenter notes that the Genius Act is more favorable for the TGA refill because it has fewer restrictions. The presenter also discusses the
potential for these bills to be incompatible and the possibility of a pro-crypto supermajority in Congress. The presenter notes that stablecoin regulations are
expected to be passed by August.

Which Cryptos Will Benefit
Title: Cryptocurrencies Set to Benefit from Stablecoin Growth
Intro: This section identifies which cryptocurrencies will benefit from the stablecoin frenzy. The presenter suggests looking at the blockchains where the
biggest stablecoins are active and growing. The presenter notes that USDT is growing the fastest on Tron, APTOS, and Ethereum’s layer twos. The
presenter also notes that USDC is growing the most on Hyperliquid, Solana, SUI, APTOS, and Sonic. The presenter also mentions that PayPal's PYUSD is
expanding to Solana and Ethereum, and Ripple’s XRP is launching an EVM-compatible sidechain.
Video Summary
This video analyzes the potential of stablecoins to address the US national debt bubble. It begins by outlining the US debt ceiling crisis and its market
implications, then explores how stablecoins, particularly those backed by US bonds, could be a solution. The video estimates the necessary stablecoin
growth to refill the Treasury General Account (TGA), discusses the regulatory landscape in Congress, and identifies cryptocurrencies poised to benefit from
the anticipated stablecoin growth, focusing on the blockchains where major stablecoins are active. The video concludes by highlighting the potential for a
significant injection of crypto-native liquidity and the impact on the broader crypto market, particularly altcoins on layer-one blockchains.

Figure 7 Qualitative results on an English video about finance and cryptocurrency.
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Figure 8 Qualitative results on a Chinese video discussing stablecoins.
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