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The proliferation of hour-long videos (e.g., lectures, podcasts, documentaries) has intensified demand
for efficient content structuring. However, existing approaches are constrained by small-scale training
with annotations that are typical short and coarse, restricting generalization to nuanced transitions
in long videos. We introduce ARC-Chapter, the first large-scale video chaptering model trained on
over million-level long video chapters, featuring bilingual, temporally grounded, and hierarchical
chapter annotations. To achieve this goal, we curated a bilingual English-Chinese chapter dataset
via a structured pipeline that unifies ASR transcripts, scene texts, visual captions into multi-level
annotations, from short title to long summaries. We demonstrate clear performance improvements with
data scaling, both in data volume and label intensity. Moreover, we design a new evaluation metric
termed GRACE, which incorporates many-to-one segment overlaps and semantic similarity, better
reflecting real-world chaptering flexibility. Extensive experiments demonstrate that ARC-Chapter
establishes a new state-of-the-art by a significant margin, outperforming the previous best by 14.0% in
F1 score and 11.3% in SODA score. Moreover, ARC-Chapter shows excellent transferability, improving
the state-of-the-art on downstream tasks like dense video captioning on YouCook2.
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Github: https://github.com/TencentARC/ARC-Chapter

1 Introduction

The exponential proliferation of long-form video content, including educational lectures, vlogs, live streams, and
meeting recordings—poses significant challenges for automatic content understanding. Video chaptering [35; 44]
has emerged as a promising solution, segmenting videos into navigable and semantically coherent chapters.
This enables efficient content retrieval, summarization, and enhanced user interaction, which are critical for
managing and consuming large-scale video data.

Despite notable advances in segmenting short videos (usually within five minutes) for tasks such as action
segmentation [8; 22; 27; 32; 39], temporal event localization [16; 54], and dense video captioning [19; 38; 46],
the structuring of hour-long videos remains a formidable challenge. First, modeling sophisticated semantics
across multimodal inputs, including visual and audio streams—over extended temporal horizons requires robust
and scalable architectures. Second, the scarcity of large-scale datasets with fine-grained annotations hinders
the development and evaluation of effective chaptering models. Third, existing evaluation metrics [10; 19]
often fail to capture the semantic granularity of chapter boundaries, leading to suboptimal matching and
similarity scoring between predicted and ground-truth segments [10].

In this technical report, we introduce ARC-Chapter, a comprehensive framework designed to address the unique
challenges of long-form video structuring. As illustrated in Fig. 1, ARC-Chapter enables the segmentation of
lengthy videos into navigable chapters and generates hierarchical summaries that capture both coarse and
fine-grained content structure. Our work makes three primary contributions. First, we advance the scalability
of video chaptering by developing the first large-scale model trained on one million long videos, totaling
400,000 hours of content. This dataset is fifty times larger than those used in previous studies [35], allowing
our model to generalize across diverse video domains and formats. Second, we propose a semi-automatic
annotation pipeline for hierarchical summaries, which leverages easily accessible human-annotated coarse labels.
This pipeline integrates automatic speech recognition (ASR) derived transcripts with timestamped visual
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Opening

00:00:00

Title: Opening: Group Review of Imported
Motorcycles in the 100,000 RMB Price Range

Abstract: The video opens by introducing the
theme of this review—a group test of
imported motorcycles in the 100,000 RMB
price range. It outlines the background and
objectives of the review and introduces the
participating models.

Intro: The host introduces the goals and
procedures of this review and presents the
participating models, including the Triumph
Trident 660, Kawasaki Z900, Yamaha MT-07,
Honda CBR650R, and BMW F900R. The
impartiality of the review is emphasized, and
upcoming test segments are previewed

Static Review

Title: Appearance and Details: A Static Configuration
Analysis of the Five Motorcycles

Abstract: This chapter provides a detailed static
showcase and analysis of the five motorcycles' exterior
design and detailed configurations, including appearance,
lighting, fuel tank, engine, etc., along with an analysis of
their pros and cons.

Intro: This chapter provides a detailed static review of
the Triumph Trident 660, Kawasaki Z900, Yamaha MT-07,
Honda CBR650R, and BMW F900R, covering their
appearance, headlights, suspension, brakes, fuel tank,
engine, etc. It also analyzes the advantages and
disadvantages of each model in terms of design and
detailed configuration.

Fuel Consumption Test & Conclusion

Title: Fuel Consumption Test and Conclusion: Overall
Evaluation and Recommendations

Abstract: This chapter tests the fuel consumption of the
five motorcycles and summarizes the review results,
including a comprehensive evaluation of each model's pros
and cons, and provides recommendations for different
needs.

Intro: This chapter tests the fuel consumption
performance of the Triumph Trident 660, Kawasaki Z900,
Yamaha MT-07, Honda CBR650R, and BMW F900R. The
host summarizes the previous test results, provides a
conclusion on the pros and cons of each model, and offers
purchasing advice for different user groups, such as
beginners, power-seekers, sportbike enthusiasts, and
those with touring needs.

Mountain Road Performance

Title: Mountain Road Test Ride: First-Person Riding
Impressions

Abstract: This chapter provides a first-person
perspective of a mountain road test ride on the five
motorcycles, showcasing the host's impressions of each
bike's performance, including power delivery, handling,
and comfort, and summarizes their pros and cons.

Intro: The host provides a first-person test ride
experience on mountain roads with the Triumph Trident
660, Kawasaki Z900, Yamaha MT-07, Honda CBR650R,
and BMW F900R, sharing impressions and evaluations
of each bike's power delivery, handling, and comfort,
along with a summary of their pros and cons.

00:02:52 00:44:54 01:05:27

···
···

01:15:24

···

00:00:00 - 00:02:52 The video begins by introducing the goals and procedures of this motorcycle review and showcases the five participating models: the Triumph Trident 660, Kawasaki Z900, Yamaha MT-07, Honda CBR650R, and
BMW F900R, emphasizing the impartiality of the review. 
00:02:52 - 00:19:16 Next, the video provides a static review of the five motorcycles, covering aspects such as appearance, headlights, suspension, brakes, fuel tank, and engine, and analyzes their pros and cons in terms of design and
detailed configuration. 

00:44:54 - 01:05:27 After that, the video provides a first-person perspective (POV) test ride experience on mountain roads with the five motorcycles, showcasing the impressions and evaluations of each bike's power delivery,
handling, and comfort. 
01:05:27 - 01:15:25 Finally, the video tests the fuel consumption of the five motorcycles. Combining all previous test results, it summarizes the pros and cons of each model and provides purchasing advice tailored to different users.

···

Timeline

Short Title

Structural 
Chapter

Video 
Description

Video

00:19:16

Figure 1 An illustration of the capabilities of our video chaptering model. Given a video, our model is able to generate
timestamped chapters with three-level structured output: 1) Short Title - a concise label summarizing each chapter; 2)
Structural Chapter - a detailed, structured annotation for each chapter, including a rewritten comprehensive title, an
abstract summarizing the core content, and an introduction describing key details and highlights; and 3) Timestamp-
AlignedVideoDescription - fine-grained descriptions aligned with precise temporal boundaries. This hierarchical structure
facilitates an efficient and precise understanding of video content.

elements, enabling a holistic and multimodal understanding of video content. Third, we introduce GRACE, a
novel granularity-robust evaluation metric designed to address the semantic misalignment issues prevalent in
existing chaptering benchmarks. GRACE provides a more accurate assessment of chapter boundary quality
by accounting for varying levels of semantic granularity.

Our extensive experiments demonstrate the effectiveness of ARC-Chapter, which establishes a new state-
of-the-art on both Chinese and English long-form video chaptering benchmarks. Specifically, ARC-Chapter
substantially outperforms previous methods on the VidChapters-7M test sets (e.g., CIDEr: 100.9→186.6; F1:
45.3→59.3; SODA: 19.3→30.6). We validate the importance of multimodality, showing that our full model
surpasses video-only and audio-only variants by 7.7 and 5.3 points on SODA, respectively. Furthermore,
pretraining on our large-scale dataset significantly enhances transferability, evidenced by notable performance
gains on downstream tasks like YouCook2 and ActivityNet Captions. Crucially, our work is the first to identify
a clear scaling law in video chaptering: model performance consistently improves with increased training data
and label density. This finding refutes previous observations that performance saturates on smaller datasets
(∼20k samples) [35] and suggests a promising direction for future research.

The remainder of this report is structured as follows: Section 2 reviews related works; Section 3 describes
the dataset and annotation pipeline; Section 4 details our methodology and model architecture; Section 5
presents experimental results and analysis; Section 6 concludes.

2 RelatedWorks

Global VideoUnderstanding. Early video understanding [1; 7; 13; 23; 26; 33; 37; 41; 42; 49; 52; 53; 57] research
primarily targeted global comprehension tasks, such as video question answering, video captioning, and video
classification. These methods treat entire videos as holistic units, extracting global representations to predict
semantic labels or generate summaries. While effective for short videos, they often fail to capture complex
temporal dynamics and hierarchical structures of long-form content [24; 30].
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ASR & OCR Interleave

Timestamp1: ASR1
Timestamp2: ASR2
Timestamp3: ASR3
Timestamp4: OCR1
Timestamp5: ASR4

Timestampi: ASRi
Timestampj: ASRj
Timestampk: ASRk
Timestampm: OCRm
Timestampn: ASRn

Paragraph

{
    "paragraph": [
        {
            "title": TITLE1,
            "abs": ABS1,
            "timestamp": [ts1, te1]
        },
        ......,
        {
            "title": TITLEn,
            "abs": ABSn,
            "timestamp": [tsn, ten]
        }],
    "summary": SUMMARY
}

Video

Audio

Structural Chapter Generation
       LLMLLM

Output
Description w/ Timestamp

<span>00:00:00 - 00:00:43</span>
The video begins with Haojun's
opening remarks, in which he
introduces the purpose of this
series, "Haojun Talks about
Chinese Civilization."

<span>00:00:43 - 00:06:18</span>
Next, the video explores how the
rulers of the Han Dynasty sought
new foundations of legitimacy
after the fall of the Qin Dynasty.

<span>00:06:18 - 00:08:59</span>
Finally, the video introduces the
Confucian worldview of the realm.

       LLMLLMDescription 
w/ Timestamp

Output
Timestamp

Figure 2 Overview of our automatic video annotation pipeline for hierarchical chaptering and summarization. We
extract visual captions (OCR included) from sampled video frames and ASR transcripts from audio. These outputs
are temporally aligned and interleaved into a unified multimodal transcript. This transcript, together with original
chapter markers, is processed by an LLM to produce structured chapters and timestamp-aligned video descriptions.

Temporal Segmentation for Short Videos. To address the limitations of global approaches, recent works [14;
15; 17; 28; 30; 40; 47; 50; 56] have shifted towards modeling the temporal structure of videos. Datasets
like ActivityNet Captions [19], Charades-STA [11], YouCook2 [55] and Breakfast [21] provide timestamped
event annotations, enabling tasks such as temporal event localization, action segmentation, and dense video
captioning. These approaches move beyond global representations to identify and describe fine-grained events
and local temporal dependencies. However, most temporally-structured datasets [25; 48] are limited to short
clips, typically under several minutes, and thus do not capture the challenges of ultra-long videos found in
lectures, podcasts, or livestreams. The lack of large-scale, long-duration datasets with fine-grained temporal
annotations remains a major bottleneck.

Long-FormVideo Structuring. A few efforts [35; 45] have explored the structuring of hour-long videos. The
VidChapters-7M dataset [45] provides a large-scale benchmark for video chaptering, with millions of videos
and annotated chapter boundaries, better reflecting real-world scenarios such as vlogs, podcasts, and meetings
where long-term temporal reasoning is essential.

Despite these advances, significant challenges remain. Existing chaptering models often rely on limited
modalities, such as automatic speech recognition, are trained on small-scale datasets, and produce coarse,
uninformative descriptions, which limits their scalability across diverse video domains. To address these issues,
we propose a scalable, multimodal framework for long-form video chaptering, supported by a large-scale
dataset with detailed chapter descriptions.

3 Data Collection and Annotation

A significant challenge in developing strong video chaptering models is the scarcity of publicly available
datasets with detailed, multi-level annotations. Existing datasets typically provide only sparse labels, such as
video-level categories for video classification or coarse temporal segments with brief titles such as VidChapters-
7M. To address this limitation and to facilitate research on hierarchical video chaptering and summarization,
we introduce a new, richly annotated video chaptering dataset. This section details our data curation and
annotation pipeline.

3.1 Data Curation

One of the key contributions of our work is the introduction of a new large-scale dataset, named VidAtlas,
which is designed for the task of hierarchical video chaptering and summarization. Our primary goal is to
construct a dataset that not only provides accurate chapter boundaries but also offers dense, multi-granularity
textual descriptions for both individual chapters and the entire video.



Data Sourcing. We begin by sourcing videos from the video platform. The primary selection criterion is the
presence of author-provided chapter markers. These markers, which include the start/end timestamps and a
short title for each chapter, are manually defined by the video uploader. This approach provides us with a
highly accurate human-verified ground truth for the temporal segmentation of videos, which is a significant
foundation for our subsequent annotation efforts. The collected videos, which are long, well-structured, and
information-dense, are ideal candidates for video chaptering.

Filtering and Refinement. Starting with this initial collection, we apply several filtering criteria to guarantee
the quality and diversity of our dataset for video understanding and chaptering. First, we retain videos whose
durations lie between 2 minutes and 3 hours. This range excludes trivial short clips, which are unnecessary
for chaptering, as well as overly long videos, which are often unstructured (e.g., live streams) and difficult to
process due to the context-length limitations of our model. Second, we curate videos across a wide range of
domains, including educational lectures, DIY tutorials, reviews & unboxings, interviews & podcasts, webinars
& presentations, gaming & music albums, fitness & cooking and documentaries. This wide distribution of
domains ensures that the dataset is not biased towards any specific genre and supports the development of
more generalizable models.

      

      

      

     

     

     
     

     
     

               

     

     

     

     

      

      

      

      

      

      

                         

     

     

     

    

    

    

    
            

    

    

    

     

     

     

     

     

     

                           

(a) Duration distribution

Others VidAtlas

(b) Categories in dataset

Figure 3 Dataset statistics: (a) Distribution of video durations (top) and chapter durations (bottom) in the VidAtlas
dataset. (b) Distribution of video topics in VidAtlas.

3.2 Hierarchical Annotation

To generate high-quality video chaptering annotations, we design an automated annotation pipeline that
leverages both multimodal content extraction and large language model (LLM)-based reasoning based on the
videos with user-provided chapter makers, i.e. timestamps and brief title of each chapter. The illustration of
our annotation pipeline is shown in Fig. 2.

Multimodal Information Extraction. Considering efficiency and cost, we avoid directly using multimodal large
language models (MLLMs) for video annotation. Instead, we first extract multimodal information from video
frames and audio, integrate this content, and then feed the result into text-only LLM for reasoning and
annotation. Specifically, we use Whisper-v3 [29] to transcribe speech into text, segmented into sentences
with the corresponding timestamps. In parallel, we uniformly sample video frames with a fixed sampling
frame rate and employ Qwen2.5-VL-7B [4] to extract visual captions and on-screen text (OCR) for better
understanding of the video content. Subsequently, the visual captions and ASR transcripts are temporally
aligned based on their respective timestamps. This process allows us to interleave the textual content from
both modalities into a unified chronologically ordered sequence. This multimodal transcript, together with



the original user-provided chapter timestamps and short titles, is fed into LLM for reasoning and structural
segmentation.

LLMReasoning and Chaptering. The LLM is prompted to analyze the transcript and reorganize the content
into a structured set of chapters, each containing a comprehensive title, an abstract, an introduction, and
precise temporal boundaries. Following this, we perform a verification step on the LLM’s output to ensure
that the generated chapter boundaries strictly adhere to the original timestamps. Building upon the verified
structured chapter information, we further prompt the LLM to produce a comprehensive, timestamped
narrative description for the entire video. Through this annotation pipeline, we can efficiently obtain accurate,
multi-level video chapter segmentation and descriptive annotations. The resulting annotations form a dense,
hierarchically organized representation of long-form videos, supporting a wide range of research tasks in video
understanding, temporal reasoning, chaptering, and summarization.

3.3 Dataset Statistics

We summarize the key statistics of our VidAtlas dataset and highlight the properties that make it suited
for research on video chaptering and summarization. The dataset comprises 410k+ videos with an average
duration of 16.8 minutes, amounting to more than 115k hours of diverse content. On average, each video
is segmented into 5.5 chapters, with an average chapter duration of 182 seconds (approximately 3 minutes).
Fig. 3a provides a detailed statistic of the duration distributions for both videos and chapters. Our dataset
contains a wide spectrum of video and chapter lengths to ensure models are trained on a diverse temporal
structures. This comprehensive video/chapter length distribution makes the models exposed to a variety of
content length, from concise segments to hour-long narratives, forcing models to resolve both rapid topic shifts
and sustained thematic segments. To mitigate genre bias, VidAtlas covers a wide array of topics, including
16 primary categories with over 100 subcategories, as shown in Fig. 3b. The categories of VidAtlas include
Games, Knowledge, Technology, Music, Life, Animation, and Sports, together with other variety that captures
long-tail topics. Videos in these categories are typically well-structured and information-dense, making them
ideal for chaptering.

4 ARC-Chapter

4.1 Overall Framework

We leverage Qwen2.5-VL-7B [5] as our base model, enhancing its capabilities to process and structure video
content into chapters. The architecture of our model is illustrated in Fig. 4. The model unifies three inputs:
1) an instruction prompt that specifies the task of input modalities and output schema. 2) a sequence of
sampled video frames that provide appearance, layout and on-screen text (including subtitles which often
align with the ASR transcript), and 3) a timestamp-aligned ASR transcript from audio. While both the video
and ASR transcript inputs are optional, the model requires at least one modality to be provided. Frames
are embedded with Qwen2.5-VL vision encoder and translated into visual tokens, while ASR transcript is
tokenized as plain text with explicit timestamps. The vision encoder is kept frozen and the language model is
instruction tuned on VidAtlas to specialize in video chaptering.

Prompt Design. The model’s behavior is guided by carefully designed prompts that specify the desired task
and output format. To handle the diverse requirements of different inputs and outputs of the model, we
design a set of 18 distinct prompt templates. These prompts are constructed based on three axes: language in
source video, input modality, and desired output format.

• Language: We support English and Chinese to match the language of the source video.

• InputModality: The prompt specifies whether the model should rely on ASR-only, video-only, or both
video and ASR inputs. This allows for ablation studies and adaptation to scenarios where one modality
may be absent or noisy.
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Figure 4 Overview of the model architecture for video chaptering. The model inputs include a task-specific prompt,
sampled video frames, and timestamped ASR transcripts. Video frames are processed with a frozen vision encoder.
The resulting visual features, along with the tokenized prompt and ASR text, are fed into a trainable multimodal large
language model (MLLM). Based on the inputs, the model is able to generate chapters in various formats, including
timestamped concise title, detailed structural chapters, or comprehensive video description with timestamps.

• Output Format: We define three distinct output structures: (a) Short Titles for concise chapter markers,
(b) Structured Chapters that include a title, abstract, and introduction for each chapter, and (c) Video
Descriptions that provide a dense, timestamp-aligned summary of the entire video.

Video Input. To balance temporal coverage and context budget, we follow the setup of Qwen2.5-VL and cap
the visual stream at 768 frames sampled at up to 1 fps. That is to say, videos shorter than 12.8 minutes are
sampled with 1 fps, while longer videos are uniformly down-sampled to 768 frames with a lower fps. The
sampling strategy retains coarse global coverage for hour-long content, ensuring sufficient representation to
capture the high-level semantic shifts necessary for the chaptering task. Since the model context length is
shared across modalities, we dynamically adjust the per-frame token allowance according to the input of
ASR transcript. For video-only inputs we use a higher frame resolution (higher token budget per frame)
so that small text (OCR and subtitles) and fine-grained visual cues are preserved. When ASR is provided
alongside video, we reduce frame resolution (thus reducing the number of visual tokens) so that the combined
input of visual tokens and ASR text fits the maximum context length of MLLM. This dynamic allocation is
implemented by adjusting image scaling and patch-tokenization parameters at preprocessing time. Moreover,
to enhance temporal awareness, we randomly overlay timestamps onto the video frames, making the model
more sensitive to the video timeline.

ASRInput. Although integrating raw audio features or learned audio embeddings from pretrained ASR models
(e.g.Whisper [29]) is attractive, it presents severe scalability challenges for long-form video. For example, while
Whisper-style audio encoder produces 50 audio tokens per second, a 60-minute audio therefore produces 180k
tokens, far exceeding feasible LLM context budgets without aggressive compression or specialized audio-to-token
aggregation. Furthermore, synchronizing fixed-rate audio features with dynamically sampled video frames
poses an additional alignment problem. To address these practical constraints, we opt to use ASR transcripts
as a highly effective proxy for the audio modality. Text is significantly more information-dense. Therefore,



the ASR transcript of a long audio segment occupies far fewer tokens than its raw feature representation.
This makes processing hour-long videos computationally feasible for both training and inference. Although
such a paradigm introduces an extra step for offline ASR transcription, we believe that trading a modest
amount of offline processing time for the ability to handle long-form audio under strict context-length budgets
is worthwhile. In our implementation, we use Whisper-large-v3 [29] to generate timestamped ASR transcripts.
The model provides sentence-level segments with corresponding start timestamps. We formulate the ASR
text and timestamp of each segment as start time (hh:mm:ss): <ASR text>. The normalized ASR transcript
is then passed to the model either alone (ASR-only) or together with visual tokens (ASR+Video), providing
dense semantic information that is particularly useful for temporal boundary detection and chaptering.

4.2 Training Strategy

Training Objective. We perform supervised instruction tuning on VidAtlas and VidChapter-7M using all
prompt templates. The training objective is the standard autoregressive next-token prediction loss over the
target sequence. Given a multimodal input sequence consisting of a prompt Xprompt, video frames Xvideo,
and an ASR transcript Xasr (video stream Xvideo and ASR streams Xasr are optional), the model is trained
to maximize the log-likelihood of the target output sequence Y = (y1, y2, ..., yn) (e.g., a list of chapter titles, a
structured chapter object, or a timestamped description):

L = −
n∑

i=1

logP (yi | y<n, Xprompt, Xvideo, Xasr) ,

where y<i represents the preceding ground-truth tokens. During training, the vision encoder is frozen to
enable a larger context length, while all parameters of the large language model are optimized with the
training objective.

AdaptiveModality Dropping. To enable a single model to perform well under various deployment conditions,
we adopt an adaptive modality dropping strategy during training. For each training sample, we randomly
configure the input with a certain probability to be one of three types: 1) Video + ASR: Both modalities are
provided to the model. 2) Video-only: The ASR transcript is omitted, forcing the model to rely solely on
visual information. and 3) ASR-only: The video frames are omitted, requiring the model to understand the
content based on the transcript alone. This strategy prevents the model from becoming overly reliant on a
single modality and ensures it develops a comprehensive understanding from all available input modalities.
Consequently, a single trained model can be deployed to handle videos under various conditions during
inference (whether only a video is available, only transcript is provided, or both are present), without requiring
specialized models for each scenario.

4.3 EvaluationMetrics

Evaluation metrics can be divided into two aspects: (1) the accuracy of segmentation (e.g., Precision, Recall,
and tIOU [20]), and (2) joint metrics that assess both segmentation and chapter captioning (e.g., CIDEr [20],
SODA [10]). However, we observe that the primary metrics such as SODA, originally developed for dense video
captioning, are not well-suited for the video chaptering task. While SODA enforces a one-to-one matching
between predicted and ground-truth events to suppress redundancy in overlapping event detection, video
chaptering requires segmenting videos into sequential, non-overlapping chapters. Furthermore, chaptering
annotations often exhibit granularity ambiguity: different annotators may segment the same video at varying
levels of detail—some may annotate coarse-grained chapters (e.g., by day in a travel vlog), while others may
provide fine-grained chapters (e.g., by each visited site within a day). This results in multiple valid annotation
granularities for the same content.

To address these challenges, we propose GRACE, a metric tailored for video chaptering. It introduces a
many-to-one (set-to-one) matching paradigm, allowing each ground-truth (predicted) chapter to be matched
with a set of predicted (ground-truth) chapters. As illustrated in Fig. 5, for each ground-truth chapter, GRACE
evaluates the temporal overlap and semantic similarity between the chapter and its matched prediction set,
using established language similarity metrics (e.g., BERTscore [51]) for textual comparison. Specifically, we
aim to find a best many-to-one mapping M which splits both ground-truth set G and prediction set P into
several pairs of groups {(Pi, Gi)}Ki=1, followed by group-based similarity calculation:



(a) One-to-One Matching: SODA
Pred p1 p2 p3

GT g1 g2 g3

SODA = λ1Sim(p1, g1) + λ2Sim(p3, g3)

(b) Many-to-One Matching: GRACE
Pred p1 p2 p3

GT g1 g2 g3

GRACE = φ1Sim(p1, g1 ∪ g2) + φ2Sim(p2 ∪ p3, g3)

Figure 5 Comparison of one-to-one (SODA) andmany-to-one (GRACE)matching strategies. The one-to-one matching can
fail to account for important events like p2 and g2, whereas the many-to-one strategy considers all predicted and
ground-truth events for a more robust, overall assessment.

GRACE =
∑

(Pi,Gi)∈M(P,G)

φ(Pi, Gi) · BERTscore(Pi, Gi) (1)

φ(Pi, Gi) =
1

|Pi||Gi|
∑

p∈Pi,g∈Gi

IOU(p, g) (2)

s.t. Pi ∩ Pj = ∅, ∪(Pi) = P, Gi ∩Gj = ∅, ∪(Gi) = G, min(|Pi|, |Gi|) = 1 (3)

where Pi and Gi epresent groups of chapters. When calculating the BERTScore between two groups, we first
concatenate all captions within each group into a single sentence, then compute the BERTScore between the
two merged sentences. We adopt the dynamic time warping algorithm (DTW) [6; 31] to achieve the optimal
matching M(P,G), with IOU between two chapters being used as the matching criteria.

GRACE provides a more accurate and human-aligned assessment of chaptering models. This design confers
several advantages: (1) robustness to annotation granularity, enabling fair evaluation across diverse annotation
styles; (2) improved semantic fidelity, rewarding models that capture the full scope of ground-truth chapters;
and (3) closer alignment with human judgment of chapter boundaries and content.

4.4 Reinforcement Learning with GRPO

While supervised fine-tuning (SFT) achieves strong performance, the standard cross-entropy loss does not
directly optimize for the primary objective of video chaptering: temporal accuracy. To further enhance the
model’s temporal localization capabilities, we introduce a subsequent reinforcement learning phase using the
GRPO algorithm [12].

The core of this phase is a reward function designed to directly incentivize precise chapter boundary prediction.
We leverage our proposed GRACE metric, which holistically evaluates both temporal alignment and semantic
content. However, to specifically sharpen the model’s ability to predict accurate timestamps of segmented
chapters, we formulate a simplified, temporal-only reward by omitting the semantic BERTscore component
from Equation (1). For a given ground-truth chapter set G and a model-generated set P , the reward R is
calculated by summing the temporal alignment scores φ over the optimal matching M(P,G) found via DTW:

R =
∑

(Pi,Gi)∈M(P,G)

φ(Pi, Gi). (4)

This reward directly reflects the quality of the temporal segmentation, providing a clear and targeted
optimization objective.

Due to the significant context length required for multimodal inputs, and to specifically bolster the model’s
ability to reason from visual cues, we conduct this RL training phase using only the video modality. We select
a diverse subset of 90k videos from both Chinese and English SFT data, ensuring that training samples cover
all three output formats: short titles, structural chapters, and timestamped video description. We initialize
the model with the weights from our best-performing SFT model and further optimize it using GRPO. The
KL divergence coefficient is set to 0.01 to ensure that the policy does not stray far from the robust language
generation capabilities learned during SFT, thereby balancing temporal refinement with descriptive quality.



Table 1 Comparison to the state of the art on VidChapters7M-test set: The results of compared methods are evaluated in
the ASR-only setting from Chapter-Llama [35]. We evaluate ARC-Chapter with different input modalities: -vid for
video, -asr for ASR, and -vidasr for both. “Ft.” indicates whether the model is finetuned for chaptering task. †denotes
LLM-API results reported from Chapter-Llama. Our model, ARC-Cchapter, achieves the best performance across all
metrics and video durations.

Backbone Ft.
Short Medium Long All

F1 tIoU S C F1 tIoU S C F1 tIoU S C F1 tIoU S C

GPT-4o-mini [18]† ✗ 32.1 64.5 7.2 42.4 30.5 62.3 6.1 30.6 28.0 61.0 6.0 27.3 31.2 63.6 6.8 37.8
GPT-4o [18]† ✗ 37.7 68.0 8.4 53.8 38.1 68.8 8.1 51.4 36.5 66.2 6.6 34.8 37.6 68.0 8.1 51.0
Gemini-2.0-Flash [34]† ✗ 39.9 69.2 12.0 72.8 43.8 71.4 11.2 70.3 34.9 66.2 9.0 51.6 40.2 69.3 11.4 69.7
Gemini-1.5-Pro [34]† ✗ 41.7 70.6 11.7 65.3 43.8 71.8 11.2 61.4 41.3 70.6 10.1 55.3 42.2 70.9 11.4 63.2
Vid2Seq [45; 46] ✗ 2.5 28.6 0.3 0.3 3.2 29.7 0.3 0.4 4.6 32.0 0.3 0.5 3.0 29.3 0.3 0.4
Llama 3.1-8B [9] ✗ 29.9 63.4 7.1 34.5 30.6 62.7 5.4 28.1 26.6 59.3 3.6 18.9 29.5 62.5 6.2 30.7

Vid2Seq [45; 46] ✓ 33.4 63.7 15.2 74.9 19.0 53.3 7.5 31.9 16.7 50.8 5.9 28.4 26.7 58.6 11.6 55.8
Chapter-Llama [35] ✓ 45.5 72.2 20.2 103.5 46.7 72.3 18.8 98.7 41.3 69.2 15.8 91.2 45.3 71.8 19.3 100.9

ARCChapter-asr1 ✓ 54.5 76.7 26.3 144.1 55.9 77.5 25.1 143.0 55.1 77.0 24.8 158.0 54.5 76.7 25.3 144.0
ARCChapter-vid ✓ 52.6 75.8 26.0 156.8 51.4 75.3 20.6 124.0 47.3 72.3 19.2 119.8 50.2 74.3 22.9 138.3
ARCChapter-vidasr ✓ 60.0 80.1 32.5 195.7 59.2 79.4 29.6 177.3 60.2 79.9 29.2 190.3 59.3 79.6 30.6 186.6

Table 2 Comparison to the state of the art on VidChapter7M-sml300 with different input modalities. Our method, ARC-
Chapter, demonstrates superior performance on VidChapter-sml300 by effectively integrating both speech and video
information. The modalities of “Embed” and “Caption” in LLaMA and Chapter-LLaMA models play the same role as
“Video” in ARC-Chapter model.

Method Ft.
Modalities Segmentation Titles

Speech Embed. Caption F1 tIoU S C

LLaMA 3.1-8B
✗ ✗ ✗ ✓ 12.6 48.6 1.9 6.4
✗ ✓ ✗ ✗ 22.7 57.3 4.4 19.7
✗ ✓ ✗ ✓ 29.9 63.0 6.9 33.7

Chapter-LLaMA

✓ ✓ ✗ ✗ 38.5 68.1 13.9 67.3
✓ ✗ ✓ ✗ 38.4 66.5 3.4 7.3
✓ ✗ ✗ ✓ 39.1 67.7 5.9 20.2
✓ ✓ ✓ ✗ 40.4 68.2 15.3 74.9
✓ ✓ ✗ ✓ 42.6 70.6 16.4 82.4
✓ ✓ ✓ ✓ 44.4 71.5 16.3 84.2

ARCChapter

Speech Video F1 tIoU S C

✓ ✓ ✗ 56.5 78.1 25.9 148.5
✓ ✗ ✓ 50.0 74.3 21.6 130.8
✓ ✓ ✓ 62.4 81.6 30.1 190.7

5 Experiments

In this section, we conduct a series of experiments to thoroughly evaluate our video chaptering model. We
first introduce the evaluation benchmarks, then present the main results and detailed ablation studies.

5.1 Evaluation Benchmark

To comprehensively assess our model’s capabilities in video chaptering, we evaluate it on three distinct
benchmarks covering different languages, scales, and data modalities. The evaluation targets two key
criteria: the precision of temporal boundary localization and semantic relevance of the generated chapter
titles/descriptions. VidChapters7M is a large-scale English chaptering dataset. We use two of its standard
splits for evaluation, i.e., VidChapters7M-test and VidChapters7M-sml300val. VidChapters7M-test is a
large-scale test set comprising 8.2k samples. For this split, the compared methods are only based on ASR

1For convenience, "ARC-Chapter" in the main text is abbreviated as "ARCChapter" in all experimental result tables.



Table3 Comparison to the stateof the art onVidAtlas-test set: “Ft.” indicates whether the model is finetuned for chaptering
task. Modality‡ specifies which inputs are provided: A for ASR and V for video. † denotes LLM-API results. For
API-base models, the video is converted into a textual description, which is then provided as input for LLM.

Backbone Ft.
Modality‡ Short Medium Long All

A V F1 tIoU S C F1 tIoU S C F1 tIoU S C F1 tIoU S C G

Claude-Sonnet [3]† ✗ ✓ ✗ 39.2 69.8 7.6 38.8 34.7 66.3 6.5 33.8 36.6 66.9 5.8 33.5 37.8 68.6 7.1 36.9 11.1
Doubao-1.5-Pro [13]† ✗ ✓ ✗ 38.8 70.4 7.4 40.6 35.8 68.4 6.9 38.3 36.1 67.1 3.2 17.4 37.7 69.5 6.7 36.4 9.8
DeepSeek-R1 [12]† ✗ ✓ ✗ 40.0 71.1 11.0 48.8 37.9 69.5 9.6 45.2 35.7 66.8 6.3 28.3 38.9 70.1 10.0 44.8 13.4
Gemini-2.5-Pro [7]† ✗ ✓ ✗ 39.6 68.3 8.1 44.6 30.6 60.1 6.3 37.4 34.0 60.2 9.9 54.0 45.2 73.2 9.7 53.5 14.9
GPT-4.1 [2]† ✗ ✓ ✗ 36.5 68.6 6.6 34.6 33.0 66.1 5.8 32.4 36.0 66.3 5.9 33.0 35.7 67.7 6.3 33.9 -
Qwen3-235B [43]† ✗ ✓ ✗ 36.7 67.7 7.7 36.9 33.5 65.6 6.7 33.9 26.6 61.0 3.8 18.7 34.4 66.2 6.9 33.4 10.2

Claude-Sonnet [3]† ✗ ✓ ✓ 36.8 68.2 7.9 42.4 32.0 65.2 8.0 45.0 40.8 68.2 16.8 110.4 36.4 67.5 9.3 53.6 13.2
Doubao-1.5-Pro [13]† ✗ ✓ ✓ 39.5 70.0 7.7 43.3 35.5 67.6 7.6 45.2 44.4 69.8 14.9 109.0 39.5 69.4 8.8 54.1 12.6
DeepSeek-R1 [12]† ✗ ✓ ✓ 39.4 69.9 10.5 50.0 38.0 68.7 10.8 54.9 62.2 80.3 48.2 264.4 41.1 70.5 13.9 69.7 17.1
Gemini-2.5-Pro[7]† ✗ ✓ ✓ 48.3 73.1 9.8 54.9 45.4 70.1 11.8 66.1 54.8 75.3 30.6 172.5 48.7 72.8 13.5 75.8 19.8
GPT-4.1 [2]† ✗ ✓ ✓ 35.3 67.2 6.3 34.2 30.8 64.2 6.2 34.8 43.9 69.2 19.1 120.2 35.8 66.9 8.3 47.9 11.7
Qwen3-235B [43]† ✗ ✓ ✓ 24.8 59.2 6.5 31.9 19.5 52.9 5.6 28.2 27.5 57.8 16.0 92.9 24.1 57.7 7.8 40.7 9.6

ARCChapter-asr ✓ ✓ ✗ 57.3 79.3 24.1 103.3 60.1 80.8 24.5 113.5 63.2 79.5 28.1 140.6 58.8 79.7 24.8 111.3 28.0
ARCChapter-vid ✓ ✗ ✓ 57.1 79.1 21.2 91.5 55.9 78.2 18.4 88.2 62.0 79.4 27.9 137.8 57.6 78.9 21.6 98.1 25.0
ARCChapter-vidasr ✓ ✓ ✓ 65.5 83.8 28.5 129.2 65.7 84.2 29.0 140.0 69.6 84.2 38.5 192.3 66.2 84.0 30.2 141.5 34.1

transcripts, while ARC-Chapter is evaluated with different input modalities. VidChapters7M-sml300val is a
smaller validation set of 300 samples, which includes both the original videos and their corresponding ASR
transcripts. This subset is ideal for fast evaluation and conducting modality ablation studies. To assess
generalization beyond English, we additionally report experimental results on VidAtlas-test, a Chinese test
set with more than 1.5k videos together with ASR transcripts and original videos.

5.2 Comparison with the State of the Art

Performance on VidChapters7M. As shown in Tab. 1, our ARC-Chapter significantly outperforms all existing
methods on VidChapters7M-test benchmark. Our model achieves a new state-of-the-art result in the ASR-only
regime, with an overall F1 score of 54.5, tIoU of 76.7, SODA of 23.5, and a CIDEr of 144.0. This represents
a substantial improvement over the previous SOTA model, Chapter-Llama, with absolute gains of +9.2 in
F1, +4.9 in tIoU, and +6.0 in the SODA score. Notably, the performance gain enlarges as video duration
increases. For long videos (30-60 min), the evaluation metrics of SODA and CIDEr for ARC-Chapter are
remarkably higher than which in Chapter-LLama, demonstrating the superior capability of our model in
processing long videos. Even when compared against powerful general models like GPT-4o and Gemini-1.5-Pro,
which are not finetuned on this task, ARC-Chapter perform much better. The experiments conducted on
VidChapter7M-sml300 show more comparisons for different input modalities, shown in Tab. 2.

PerformanceonVidAtlas. As detailed in Tab. 3, we evaluate our model on the VidAtlas benchmark under three
settings: ASR-only, video-only, and ASR+video. ARC-Chapter consistently establish a new state-of-the-art
across all settings. Our full multimodal model, ARCChapter-vidasr, which leverages both ASR and video
inputs, achieves an overall F1 score of 66.2, tIoU of 84.0, SODA of 30.2, CIDEr of 141.5, and GRACE of
34.1. This marks a significant leap over the strongest LLM, Gemini-2.5-Pro, with an absolute improvement
of +17.5 in F1 score and more than doubling the SODA score (+16.7). Furthermore, our single-modality
versions also demonstrate superior performance. The ASR-only model, ARCChapter-asr, achieves an F1 of
58.8, and the video-only model, ARCChapter-vid, scores an F1 of 57.6. From shot-to-long videos, our model
consistently outperforms other models, demonstrating its robustness in handling extended content.

5.3 Transferability

To evaluate transferability, we pre-trained ARC-Chapter on our dataset before fine-tuning and testing it on
the dense video captioning benchmarks, i.e., Youcook2 and ActivityNet Captions. As shown in Table 4, our
model establishes a new state-of-the-art, significantly outperforming all prior MLLM-based methods.

Notably, for event segmentation ability, ARC-Chapter achieves an F1/SODA Score of 37.9/12.5 on YouCook2,
a substantial improvement over the previous best of 33.5/7.9. This demonstrates that the knowledge acquired
during pre-training effectively transfers and enhances performance on downstream tasks.



Table 4 Transferability Performance on YouCook2 and ActivityNet Captions [20] for Dense Video Captioning. All methods
use visual modality as inputs without ASR. The Rank(↓) column represents the overall performance, calculated as the
arithmetic mean of a method’s rank across all reported metrics (M, S, C, and F1) for that dataset. Some results for
ActivityNet Captions are sourced from [14] and [46]. * indicates zero-shot evaluation. The best results on each dataset
are in bold and the second-best are underlined.

Method
YouCook2 ActivityNet Captions

M S C F1 Rank↓ M S C F1 Rank↓

GIT [36] 3.4 3.1 12.1 17.7 7.5 7.8 5.7 29.8 50.6 4.3
ECHR [46] 3.8 - - - 4.0 7.2 3.2 14.7 - 8.6
PDVC [46] 4.7 4.4 22.7 - 5.0 8.0 5.4 29.0 56.7 3.8
Vid2Seq [46] 9.3 7.9 47.1 27.3 2.8 8.5 5.8 30.1 52.4 2.6
CM2 - 5.3 31.7 28.4 4.7 - - - - -

TimeChat [30] - 3.4 11.0 19.5 8.0 5.7 4.7 19.0 36.9 8.8
VTimeLLM [17] - - - - - 6.8 5.8 27.6 - 5.8
Momentor∗ [28] - - - - - 4.7 2.3 14.9 - 10.7
TRACE [14] - 6.7 35.5 31.8 3.7 6.4 6.0 25.9 39.3 5.8
VTG-LLM [15] - 3.6 13.4 20.6 6.7 5.9 5.1 20.7 34.8 8.3
TimeExpert [47] - 7.2 39.0 33.5 2.7 7.0 6.5 28.4 40.5 4.3
ARC-Chapter 9.6 12.5 69.4 37.9 1.0 8.1 5.9 35.4 55.9 2.0

5.4 Ablation Studies

5.4.1 Scaling Property

We analyze how ARC-Chapter scales with the amount of training data. Concretely, we subsample the
training set at 20%, 40%, 60%, 80%, and 100% and keep the model architecture and prompt templates
fixed. We evaluate three inference modalities, i.e.ASR-only, Video-only, and ASR+Video, on two benchmarks:
VidChapters-7M (sml300val) and a sampled subset of the VidAtlas-testset for efficiency. As illustrated in Fig. 6,
the performance across all metrics (F1, tIOU, SODA, and CIDEr) and input modalities (ASR-only, Video-only,
Video+ASR) demonstrates a clear positive correlation with the amount of training data. Specifically, the
full multimodal model (Video+ASR) consistently achieves the best performance. ARC-Chapter is highly
data-efficient, achieving strong performance with as little as 20% of the training data. Furthermore, it is
data-scalable, continuing to benefit from larger corpora for even better results.

5.4.2 Hierarchical Annotations

A core contribution of our work is the VidAtlas dataset, which features rich, hierarchical annotations. To
validate the effectiveness of this data structure, we evaluate our model’s capability to generate outputs of
varying complexity, from simple Short Title to detailed Structural Info which comprising a title, abstract
and introduction for each chapter. The results are presented in Table 5. From the experimental results, our
model successfully learns to generate these complex, structured outputs, achieving strong performance across
all generated components (title, abstract, introduction) on both VidChapter-sml300 and VidAtlas-testset
benchmarks, particularly when using both video and ASR inputs. This demonstrates a high degree of semantic
understanding.

More importantly, the capability for detailed generation does not come at the cost of performance on the
fundamental chaptering task. When comparing the segmentation metrics (temporal evaluation score F1 and
tIoU) for the Short Title task versus the more demanding Structural Info task, we observe only a negligible
difference. For example, on VidChapter-sml300, the multimodal model achieved an F1 score of 62.4 and a
tIoU of 81.6 for Short Title generation, compared to slightly lower scores of 61.4 and 80.6 for Structural Info
generation. Notably, this small margin represents the largest performance gap observed across all modality
inputs on both benchmarks, indicating that the model can perform complex, multi-part generation in a single
forward pass without compromising its core ability to accurately segment the video. This result strongly
validates our hierarchical annotation strategy, demonstrating that training on such rich data endows the
model with advanced structural reasoning capabilities.
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Figure 6 Data Scaling property of ARC-Chapter. We report the performance on VidChapter (a sampled subset) and
VidAtlas test set with respect to different percentage of training samples.

Table 5 Ablation study on the model’s capability to generate hierarchical annotations. We compare models trained with
Short Title and Structural Info (structured chapters with short title, title, abstract, and introduction) across different
input modalities (A for ASR, and V for Video) on both English (VidChapter-sml300) and Chinese (VidAtlas-testset)
benchmarks. Metrics include F1 and tIoU for boundary quality evaluation, and SODA(S), CIDEr(C), as well as our
proposed GRACE(G) for semantic quality evaluation.

Dataset
Modality

Short Title Structural Info

Segmentation Short Title Segmentation Short Title Title Abstract Intro

A V F1 tIoU S C G F1 tIoU S C G S C G S C G S C G

VidChapter-sml300
(English)

✓ ✗ 56.5 78.1 25.9 148.5 33.0 54.8 77.1 25.5 147.9 32.5 12.8 91.2 25.6 12.3 14.5 25.1 11.8 11.9 24.6
✗ ✓ 50.0 74.3 21.6 130.8 27.9 50.4 74.4 22.3 136.4 28.7 8.6 57.7 19.8 8.5 6.4 19.7 8.2 5.2 19.4
✓ ✓ 62.4 81.6 30.1 190.7 38.4 61.4 80.6 30.8 194.5 38.4 14.6 107.2 28.6 13.4 14.5 27.4 13.0 10.2 27.0

VidAtlas-testset
(Chinese)

✓ ✗ 58.8 79.7 24.8 111.3 28.0 59.1 79.8 25.5 112.8 28.6 16.2 101.7 27.0 17.5 57.8 31.8 16.4 36.0 29.6
✗ ✓ 57.6 78.9 21.6 98.1 25.0 56.8 78.7 22.0 97.8 25.1 12.7 67.4 21.7 14.5 37.5 27.3 13.8 22.2 25.2
✓ ✓ 66.2 84.0 30.2 141.5 34.1 65.9 83.8 30.8 143.5 34.6 18.5 119.8 30.7 19.1 66.3 35.3 18.2 39.8 33.0

5.4.3 Performancewith GRPO

To validate the effectiveness of our GRPO-based reinforcement learning stage, we compare the performance of
our models before (SFT-base) and after (+RL) this optimization. The results, detailed in Table 6, confirm
that GRPO serves as a powerful fine-tuning method for enhancing temporal precision in video chaptering.
From the experimental results, we draw three key conclusions.

First, GRPO directly and consistently improves metrics correlated with temporal segmentation accuracy. As
hypothesized, by optimizing with a reward focused on temporal alignment, we observe a clear performance
boost in F1 and tIoU scores across all configurations. For instance, on the VidAtlas-test set, the GRPO
model with video input achieves a notable gain of +0.8 in F1 and +0.7 in tIoU over its SFT baseline. This
empirically validates that GRPO effectively sharpens the model’s ability to predict precise chapter boundaries.

Second, we observe a significant degree of cross-modal transferability from the RL training. Notably, despite
the GRPO training being conducted exclusively on the video modality, the temporal localization performance
of the ASR and Video+ASR inputs also improves. The GRPO model with Video+ASR input, for example,
achieves a +1.5 F1 and +1.1 tIoU gain on VidChapter7M-test. This suggests that the optimization is not
merely learning a superficial visual-to-temporal mapping but is refining a more abstract, modality-agnostic
representation of temporal structure within the language model’s parameters.

Finally, these enhancements in temporal precision are achieved without sacrificing semantic quality. Crucially,
although our reward function is agnostic to content, semantic metric such as CIDEr remain highly comparable
to the SFT baseline, and in some cases even improve (e.g., +1.1 CIDEr for video input on VidChapters7M-



Table 6 Effectiveness of Reinforcement Learning with GRPO. We compare the performance of our models before (SFT)
and after applying reinforcement learning (+RL) with GRPO. The evaluation is conducted on two benchmarks
across different input modalities (A: ASR, V: Video). The results show that GRPO consistently improves temporal
segmentation metrics (F1, tIoU) while maintaining or slightly improving semantic quality metrics (S: SODA, C: CIDEr).
Bold numbers indicate the best performance between the base model and GRPO-enhanced model for each metric.

Method Stage
Modality VidChapters7M-test VidAtlas-test

A V F1 tIoU S C G F1 tIoU S C G

Base-asr sft ✓ ✗ 54.5 76.7 26.3 144.0 28.9 58.8 79.7 24.8 111.3 28.0
GRPO-asr +rl ✓ ✗ 54.8(+0.3↑) 77.2(+0.5↑) 25.3(-1.0↓) 143.7(-0.3↓) 28.8 (-0.1↓) 59.6(+0.8↑) 80.2(+0.5↑) 24.7(-0.1↓) 109.9(-1.4↓) 28.0(↑↓)

Base-vid sft ✗ ✓ 50.2 74.3 22.9 138.3 25.4 57.6 78.9 21.6 98.1 25.0
GRPO-vid +rl ✗ ✓ 50.6(+0.4↑) 74.8(+0.5↑) 22.9(↑↓) 139.4(+1.1↑) 25.4(↑↓) 58.4(+0.8↑) 79.6(+0.7↑) 21.9(+0.3↑) 98.2(+0.1↑) 25.0(↑↓)

Base-vidasr sft ✓ ✓ 59.3 79.6 30.6 186.6 34.3 66.2 84.0 30.2 141.5 34.1
GRPO-vidasr +rl ✓ ✓ 60.8(+1.5↑) 80.7(+1.1↑) 31.0(+0.4↑) 190.7(+4.1↑) 34.6(+0.3↑) 66.8(+0.6↑) 84.3(+0.3↑) 30.4(+0.2↑) 141.7(+0.2↑) 34.4(+0.3↑)

test.). Composite metrics like SODA and GRACE, which balance segmentation and description, also maintain
their performance or exhibit slight gains. This indicates that the KL-regularized optimization successfully
avoids policy degradation, suggesting a positive effect where more accurate segmentation enables the model to
generate more focused and relevant content. In summary, GRPO acts as a critical fine-tuning step, effectively
sharpening the model’s temporal acuity while preserving its descriptive capabilities.

5.5 Qualitative Visualization

To provide a more intuitive understanding of our model’s capabilities beyond quantitative metrics, we present
qualitative examples on both English and Chinese videos. These visualizations showcase ARC-Chapter’s
ability to generate accurate, coherent, and hierarchically structured outputs in multiple formats and languages.

Fig. 7 illustrates the model’s performance on a challenging English video discussing US debt and the role of
stablecoins. The topic is dense with financial terminology and complex arguments. Our model successfully
navigates this complexity across all output formats. The Short Title accurately segments the video into
logical thematic units, such as "Intro", "Stablecoin Regulation". The Video Description with Timestamp
summarizes the video content for each chapter. More impressively, the Structural Chapters demonstrates
the model’s advanced capability for hierarchical chaptering. The generated title, abstract, and introduction
for each chapter are distinct yet complementary, providing a rich, layered understanding of the content that
mirrors human-authored summaries.

To showcase the multilingual performance of our model, Fig. 8 presents the results for a Chinese video on a
similar topic. The model exhibits a comparable level of understanding and generation quality in Chinese.
The generated Short Titles are precise. The detailed Description and Structural Chapters are fluent and
contextually appropriate. This strong cross-lingual performance underscores the model’s ability to generalize
the learned chaptering and summarization skills, rather than merely memorizing patterns in a single language.

Together, these qualitative examples confirm that ARC-Chapter is not only a powerful chaptering tool but
also a versatile video understanding model capable of producing rich, structured, and multilingual summaries
that are both accurate and useful for end-users.

6 Conclusion

In this report, we introduced ARC-Chapter, a scalable and robust framework for structuring long-form videos
into semantically coherent chapters and hierarchical summaries. ARC-Chapter leverages a large-scale dataset
of millions of long video chapters and employs a semi-automatic annotation pipeline. These innovations
advance the state of the art in video chaptering and summary generation. We also proposed the GRACE
metric, which addresses the limitations of existing evaluation methods by providing a granularity-robust
assessment of chapter boundaries. Experimental results show that ARC-Chapter achieves superior performance
across multiple benchmarks, video durations, and languages. These findings demonstrate the framework’s
effectiveness and generalizability. ARC-Chapter has strong potential to facilitate efficient content navigation,
retrieval, and understanding as long-form video content continues to grow rapidly.



Structural Chapter
Video Chapters
▷ Intro [00:00:00]
Title: US Debt Bubble & Stablecoins: An Overview
Intro: The video begins by discussing the US national debt exceeding $36 trillion and the potential for a bubble burst. It introduces the idea that stablecoins
could be a solution, noting that stablecoin issuers have already purchased over $60 billion in US debt. The presenter, Nick, sets the stage for explaining the
debt problem, the role of stablecoins, and which cryptocurrencies might benefit.
▷ US Debt Problem [00:00:48]
Title: The US Debt Ceiling Crisis and Market Impact
Intro: This section details the US debt ceiling situation, explaining that the US government hit its debt ceiling in January and cannot issue more debt. The
presenter explains that this can paradoxically stimulate the market by reducing debt issuance, leading to more money flowing into other assets. The chapter
highlights the need for the US government to refill the Treasury General Account (TGA) with $800 billion in bonds, which presents a challenge for the market.
▷ Stablecoins & US Debt [00:05:35]
Title: Stablecoins as Potential Solutions for US Debt
Intro: This segment focuses on how stablecoins could be a solution to the US debt problem. It explains that stablecoins are crypto tokens pegged to fiat
currencies, often the US dollar, and are backed by US bonds. The presenter notes that stablecoin issuers have purchased over $60 billion in US bonds. The
chapter highlights the potential of stablecoins to help refill the TGA, with the presenter emphasizing the importance of stablecoins in the market.
▷ How Much Stablecoin Growth Needed [00:09:22]
Title: Estimating Stablecoin Growth to Refill the TGA
Intro: This section examines how much stablecoin growth is needed to refill the TGA. The presenter uses the 2023 refill as a reference point, noting that the
RRP facility was used to refill the TGA. The presenter then discusses the impact of Quantitative Tightening (QT) on the TGA refill. The presenter estimates
that stablecoins could be the primary buyers of the $800 billion needed to refill the TGA.
▷ Stablecoin Regulations [00:14:24]
Title: Stablecoin Regulation and Congressional Action
Intro: This segment covers the stablecoin bills being considered in Congress. The presenter mentions the Genius Act in the Senate and the Stable Act in the
House. The presenter notes that the Genius Act is more favorable for the TGA refill because it has fewer restrictions. The presenter also discusses the
potential for these bills to be incompatible and the possibility of a pro-crypto supermajority in Congress. The presenter notes that stablecoin regulations are
expected to be passed by August.
▷ Which Cryptos Will Benefit [00:17:08]
Title: Cryptocurrencies Set to Benefit from Stablecoin Growth
Intro: This section identifies which cryptocurrencies will benefit from the stablecoin frenzy. The presenter suggests looking at the blockchains where the
biggest stablecoins are active and growing. The presenter notes that USDT is growing the fastest on Tron, APTOS, and Ethereum’s layer twos. The
presenter also notes that USDC is growing the most on Hyperliquid, Solana, SUI, APTOS, and Sonic. The presenter also mentions that PayPal’s PYUSD is
expanding to Solana and Ethereum, and Ripple’s XRP is launching an EVM-compatible sidechain.
Video Summary
This video analyzes the potential of stablecoins to address the US national debt bubble. It begins by outlining the US debt ceiling crisis and its market
implications, then explores how stablecoins, particularly those backed by US bonds, could be a solution. The video estimates the necessary stablecoin
growth to refill the Treasury General Account (TGA), discusses the regulatory landscape in Congress, and identifies cryptocurrencies poised to benefit from
the anticipated stablecoin growth, focusing on the blockchains where major stablecoins are active. The video concludes by highlighting the potential for a
significant injection of crypto-native liquidity and the impact on the broader crypto market, particularly altcoins on layer-one blockchains.

Video Description with Timestamp
(00:00:00 - 00:00:48) The video begins by introducing the pressing issue of the US national debt, highlighting the potential consequences of a default and
the Trump administration's interest in utilizing stablecoins as a potential solution. This sets the stage for a deeper dive into the mechanics of the debt ceiling
and the role stablecoins might play. (00:00:48 - 00:05:35) Next, the video explains the debt ceiling and its implications, including the possibility of market
stimulation due to reduced government debt issuance. The discussion covers the Federal Reserve's quantitative tightening (QT) program and its impact on
commercial banks' cash reserves, ultimately leading to the exploration of how stablecoins could contribute to refilling the Treasury General Account (TGA).
(00:05:35 - 00:09:23) Moving on, the video defines stablecoins and their connection to US dollar-backed assets. It examines the role of stablecoins like
USDT and USDC in various market segments, such as crypto trading and DeFi, and discusses the potential for significant growth driven by increased
demand from retail investors and PayPal's expanding use of stablecoins. (00:09:23 - 00:14:24) The video then delves into the potential of stablecoins to
address the TGA funding gap, drawing parallels to the 2023 refill process. It analyzes the potential growth of USDT, USDC, and PayPal's PYUSD,
considering the influence of retail investors, DeFi adoption, and PayPal's merchant network. The analysis suggests that stablecoins could play a crucial role
in meeting the $800 billion funding requirement. (00:14:24 - 00:17:08) Shifting focus to regulatory developments, the video discusses the two proposed
stablecoin bills in Congress: the Senate's Genius Act and the House's Stable Act. It compares the two bills, highlighting their differing approaches to
regulation, particularly concerning decentralized stablecoins, and emphasizes the importance of swift passage of these regulations. (00:17:08 - 00:20:57)
Finally, the video explores the potential benefits of stablecoins for various cryptocurrencies, focusing on the blockchains where major stablecoins are active.
It examines the growth of USDT, USDC, and PYUSD on platforms like Ethereum, Solana, and others, and discusses the potential impact of XRP's EVM-
compatible sidechain on the XRP ecosystem and the broader crypto market.
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Figure 7 Qualitative results on an English video about finance and cryptocurrency.



Video Description with Timestamp
(00:00:00 - 00:01:40) 视频开篇介绍了稳定币行业的投资价值，并指出行业投资标的难以直接投资的现状，引出如何把握稳定币投资机会的核心问
题。视频将从技术、商业模式和宏观环境等角度分析稳定币的投资价值。 (00:01:40 - 00:02:23) 接下来，视频详细介绍了稳定币的概念，将其定义
为一种基于区块链技术的加密货币，其价值与现实法币（例如美元）挂钩，并通过资产抵押来保证其稳定性，与比特币等波动性货币形成对比。 
(00:02:23 - 00:03:53) 随后，视频探讨了稳定币成为市场焦点的原因，主要在于其潜在的巨大上限，尤其是在跨境支付领域，相比传统SWIFT系统，
稳定币在交易成本、速度和便捷性方面具有显著优势。 (00:03:53 - 00:07:21) 视频进一步深入分析了稳定币在跨境支付领域的应用，指出其可以降
低交易成本，提高速度，并简化流程，尤其对中小企业在全球贸易中的参与具有重要意义，有望推动国际贸易规模的扩大。 (00:07:21 - 00:09:01)
然而，视频也指出了稳定币投资逻辑与比特币的不同之处：稳定币的价值提升依赖于实际使用量的增加，而非单纯的价格炒作，因此，稳定币的投

资成功与否取决于其能否真正进入市场并被广泛使用。 (00:09:01 - 00:12:02) 为了促进稳定币的发展，视频强调了监管的重要性，指出监管能够增
强市场信心，推动行业发展，并以美国《天才法案》为例，说明了监管对稳定币行业规范化和长期增长的关键作用。 (00:12:02 - 00:18:57) 视频随
后深入分析了稳定币发展面临的挑战，包括用户体验不佳、技术瓶颈以及“三角困局”——传统支付机构、创新公司和监管机构之间的相互制约，
使得稳定币难以建立有效的网络效应。 (00:18:57 - 00:21:24) 最后，视频总结了稳定币投资的短期和长期策略，强调了监管的重要性，同时也指出
稳定币的长期发展需要解决用户体验和技术瓶颈等问题，并预告了下一期关于Meta AI技术的深度解读。

Short Title

Structural Chapter
Video Chapters
▷ 前言 [00:00:00]
标题: 稳定币投资机遇与挑战
简介: 视频开篇，美投君介绍了稳定币行业，并指出行业内投资标的难寻，引发了对稳定币投资机会的思考。通过对比特币的波动性进行分析，强调
了把握投资机会的难度，并预告了本期视频将深入探讨稳定币的投资价值。

▷什么是稳定币？ [00:01:40]
标题: 稳定币的基本概念与特性
简介: 本章详细解释了稳定币的概念，它是一种基于区块链技术的加密货币，与传统货币不同，稳定币的价值锚定于现实法币，例如美元。视频强调
了稳定币的防伪、可追踪、不可复制等特性，并将其与比特币等波动性货币进行了对比。

▷为何大火？ [00:02:23]
标题: 稳定币的市场潜力与优势
简介: 本章探讨了稳定币成为市场焦点的原因，主要在于其在交易成本、速度和稳定性方面的优势。与美元和比特币相比，稳定币在跨境支付中具有
显著优势，例如更低的手续费和更快的到账速度。此外，稳定币作为交易媒介，更适合于日常交易，具有取代美元作为全球贸易货币的潜力。

▷稳定币使用场景 [00:03:53]
标题: 稳定币的核心应用场景：跨境支付
简介: 本章深入探讨了稳定币的核心应用场景——跨境支付。视频对比了传统SWIFT系统的弊端，如高昂的手续费和漫长的到账时间。稳定币通过区
块链技术，实现了点对点的转账，降低了成本，提高了效率。更重要的是，稳定币降低了国际贸易的门槛，使得中小企业也能参与到全球贸易中，
从而推动了跨境支付市场的扩张。

▷稳定币vs比特币 [00:07:21]
标题: 稳定币与比特币的投资逻辑差异
简介: 本章对比特币和稳定币的投资逻辑进行了对比。比特币更像是一种资产，其价值来源于不断换手交易带来的价格上涨。而稳定币更像是一种商
品，其价值来自于用量的提升，类似于美元。因此，稳定币的增长比比特币更难，需要依靠真实的个体参与到使用中。

▷制约和解药 [00:09:01]
标题: 稳定币发展面临的挑战与监管的重要性
简介: 本章深入探讨了稳定币发展面临的挑战，首先是缺乏信任，由于行业内存在乱象，导致用户对稳定币的稳定性产生怀疑。其次是监管不足，早
期的比特币也面临过类似问题。视频强调了监管对于稳定币行业健康发展的重要性，并介绍了美国《Genius Act》的出台，为稳定币行业提供了基
础的监管框架。

▷真正的挑战 [00:12:02]
标题: 稳定币发展的关键瓶颈：用户体验与网络效应
简介: 本章深入探讨了稳定币发展面临的挑战，首先是缺乏信任，由于行业内存在乱象，导致用户对稳定币的稳定性产生怀疑。其次是监管不足，早期的比特币也面临过
类似问题。视频强调了监管对于稳定币行业健康发展的重要性，并介绍了美国《Genius Act》的出台，为稳定币行业提供了基础的监管框架。
▷如何投资？ [00:18:57]
标题: 稳定币投资策略与未来展望
简介: 本章给出了稳定币投资的短期和长期策略。短期内，监管的完善将带来爆发，但增长的可持续性取决于稳定币的好用程度。长期来看，稳定币
是支付系统技术进步的必然结果，技术进步最终会得到解决。视频还提到了Meta在AI领域的投资价值，并预告了后续的Meta Pro视频。
Video Summary
本视频深入探讨了稳定币的投资价值与挑战。首先介绍了稳定币的基本概念、市场潜力和核心应用场景——跨境支付。随后，对比特币和稳定币的
投资逻辑进行了对比，强调了稳定币更像是一种商品，其价值取决于用量。视频分析了稳定币发展面临的挑战，包括信任问题、监管不足、用户体

验不佳和缺乏网络效应，并强调了监管和基础设施建设的重要性。最后，给出了稳定币投资的短期和长期策略，并展望了稳定币的未来发展方向，
强调了技术进步的重要性。 视频还预告了后续关于Meta AI技术的深度解读。
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Figure 8 Qualitative results on a Chinese video discussing stablecoins.
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